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Abstract. The convolution of two simple closed oriented curves or
surfaces, which is closely related to the Minkowski sum of the domains
bounded by them, can be computed with the help of support func-
tions. Based on the approximation of the support functions of the
given objects we formulate two strategies for computing convolutions
and Minkowski sums. These strategies rely on piecewise approxima-
tions and decomposition into elementary domains, respectively.

§1. Introduction

Minkowski sums of planar and spatial domains have various applications
in diverse fields such as in computer aided design, image processing, com-
puter graphics, robotics (path planning), NC machining, geometrical op-
tics, etc. In particular, the operation of offsetting is a special case, where
one of the domains is a ball. Due to space limitations, we refrain from
providing a list of related references, referring instead to the introduction
of [3] which provides a detailed discussion with many related references.

Convolutions of surfaces are closely related to Minkowski sums; the
boundary of the Minkowski sum is contained in the convolution of the
boundaries [8, 9, 12]. Consequently, the analysis of convolutions is needed
in order to derive a boundary representation of Minkowski sums.

In order to deal with offsets and convolutions, the present paper studies
the representation of curves and surfaces by their support functions, which
is a classical tools in the field of convex geometry [2, 4, 5]. In the realm of
Computer–Aided Design, this representation has been introduced in [11].

The support function of a surface assigns to each unit normal of a
tangent plane the distance between that plane and the origin. The surface
can be recovered from its support function by computing the envelope of
the tangent planes. Consequently, the support function leads to a special
instance of a dual representation (cf. [6, 10]).

Conference Title 1
Editors pp. 1–6.

Copyright Oc 2005 by Nashboro Press, Brentwood, TN.

ISBN 0-0-9728482-x-x

All rights of reproduction in any form reserved.
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The remainder of this paper consists of two parts. Firstly we discuss
convolutions of oriented sets, support functions and the envelope operator.
Secondly we describe two strategies for computing Minkowski sums and
convolutions, by local approximation and by decomposition into elemen-
tary domains.

§2. Quasi–convex Oriented Sets and the Envelope Operator

We discuss the notions of Minkowski sums and convolutions and intro-
duce the support function representation of quasi–convex oriented hyper-
surfaces.

2.1. The linear space of quasi–convex oriented sets

The Minkowski sum of two sets A, B ⊆ R
n+1, where we consider the cases

n = 1 and n = 2, is the set

A ⊕ B = {a + b : a ∈ A,b ∈ B}. (1)

Non–empty subsets A,B of the Cartesian product S × R
n+1, where S =

S
n ⊂ R

n+1 is the unit sphere, will be called oriented sets. They can be
seen as sets of points with associated unit vectors. Let On be the set of
all oriented sets. We denote with π1 : On → S and π2 : On → R

n+1 the
projections to the first and second component, respectively. For A,B ∈ On

and α ∈ R we define the convolution

⋆ : (A,B) 7→ A ⋆ B = {(n,a + b) : (n,a) ∈ A, (n,b) ∈ B}. (2)

and the scaling

· : (α,A) 7→ α · A = {(n, αa) : (n,a) ∈ A}. (3)

(On, ⋆, ·) is ‘almost’ a linear space, with the zero vector S × 0, but the
distributivity of multiplication

(α + β) · A = (α · A) ⋆ (β · A) (4)

does not hold in general.
An oriented set A will be said to be quasi-convex if π1 : A → S is

bijective. The set of all quasi-convex sets will be denoted by Q. It is equal
to the set of all functions S → R

n+1, i.e., Q = (Rn+1)S. This implies

Lemma 1. Along with convolution ⋆ and scaling ·, the set Q is a real

linear space.

As an example we consider domains A, B ⊂ R
n+1 bounded by smooth

hypersurfaces ∂A, ∂B. By attaching the outward pointing normals to
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all points, the boundaries become oriented sets ∂A, ∂B. Alternatively,
each point of the boundary can be equipped with both possible normals,
producing oriented sets ∂A′, ∂B′. Then

∂(A ⊕ B) ⊆ π2(∂A ⋆ ∂B) ⊆ π2(∂A′ ⋆ ∂B′), (5)

cf. Fig. 1. The last term represents the convolution as introduced in [12].

2.2. Support functions and the envelope operator

Consider a function h ∈ C1(S, R), where S is again the unit sphere. It
defines the family of hyperplanes

Tn = {x : x · n = h(n)}, n ∈ S (6)

in R
n+1, which possesses the envelope

xh

∣

∣

n

= h
∣

∣

n

n + ∇Sh
∣

∣

n

, (7)

where ∇Sh is the embedded intrinsic gradient of h,

∇Sh
∣

∣

n

= ∇h∗
∣

∣

n

− (n⊤∇h∗
∣

∣

n

)n. (8)

which is obtained by projecting the usual gradient into the tangent hyper-
plane of the sphere at n. Here, the restriction of h∗ ∈ C1(Rn+1, R) to S

is equal to h and ∇ is the usual gradient in R
n+1.

Definition 1. The envelope operator

E : C1(S, R) → Q : h 7→ {(n,xh(n)) : n ∈ S} (9)

assigns to each function h a quasi–convex oriented set E(h). Equivalently

it can be seen as a mapping

E : C1(S, R) → C0(S, Rn+1) ⊂ (Rn+1)S : h 7→ xh, (10)

which assigns to each function h a continuous function xh : S → R
n+1.

In the vicinity of regular points (see [13] for details), π2(E(h)) is a
quasi–convex hypersurface, and the value of h is the distance between the
tangent hyperplane Tn and the origin. The function h is then called the
support function of this hypersurface. Due to

‖xh‖2
2 = ‖h‖2

2 + ‖∇Sh‖2
2 (11)

where ‖ · ‖2 is the L2 norm in C1(S, R) and C0(S, Rn+1), respectively, and

‖xh‖2
∞ ≤ ‖h‖2

∞ + ‖∇Sh‖2
∞, (12)

where ‖ · ‖∞ is the L∞ norm in C1(S, R) and C0(S, Rn+1), respectively,
the norm of the envelope operator can be shown to be 1, when considering
the L2 (resp. L∞) norm of the image space and the corresponding Sobolev
norm of the domain space.
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Lemma 2. The envelope operator E defines an isomorphism between the

real linear spaces

(C1(S, R), +, ·) ∼= (E(C1(S, R)), ⋆, ·). (13)

The latter space is a subspace of (Q, ⋆, ·).

Indeed, the envelope operator is a linear mapping and its kernel consists
solely of S × 0.

We analyze the two simplest instances of support functions: If h(n) = d

is a constant function, then E(h) is the sphere with radius |d| oriented by
outer (if d > 0) or inner (if d < 0) normals. If h(n) = n·v is a homogeneous
linear function, where v ∈ R

n+1 is a constant vector, then xh(n) = v.
The oriented set E(h) is the point v with attached unit normals in all
directions, E(h) = S× {v}. The convolutions with these two objects have
simple meanings: offsetting and translation, respectively. Consequently,
the geometric operations of translation, rotation, scaling and offsetting of
quasi–convex shapes in E(C1(S, R)) correspond to the addition of a linear
function, composition with rotations, multiplication by a constant, and
addition of a constant, respectively.

Remark 1. Under certain technical regularity assumptions, which guar-
antee that the differential of the mapping xh : S → π2(E(h)) has maximal
rank, it can be shown that the hypersurface π2(E(h)) has the same smooth-
ness as h, despite the differentiation which is present in (7), see [13].

2.3. Parameterization of quasi-convex sets

For any given support function h, Eq. (7) provides a parameterization
of the corresponding surface over the parameter domain S or any subset
U ⊆ S. On the one hand, this parameterization can be useful, e.g., for
generating sample points, since a uniform sampling on S will provide a
curvature–dependent sampling on the surface. On the other hand, by
composing xh with a suitable parameterization of the sphere we obtain a
parameterization of the shape over an subset of R

n.
The case of polynomials h is studied in [13]. The corresponding shapes

can be always parameterized by rational functions of degree 2k+2, where
k is the degree of the support function. These curves and surfaces are
obtained as convolutions of certain special trochoids and surfaces of revo-
lution with trochoid profile curves, respectively.

Some interesting curves and surfaces do not possess polynomial support
functions. In the case of implicitly defined curves and surfaces, which are
defined as the zero set of a function p, the support function can be derived
by eliminating x and λ from the nonlinear system of equations

p(x) = 0, h − x⊤n = 0, n − λ∇p(x) = 0. (14)
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If p is a polynomial, then this can be achieved with the help of resultants.

Example 1. We consider the ellipsoid with half-axes 2,
√

2 and 1 which
has the support function h =

√
4n1

2 + 2n2
4 + n3

2, restricted to S. Apply-
ing the envelope operator (see (7) and (8)) gives the parameterization

xh =
1√

4 n1
2 + 2 n2

2 + n3
2





4n1

2n2

n3



 , n ∈ S. (15)

This equation can be composed with any rational parameterization of the
sphere, such as

n1 =
1 − u2 − v2

1 + u2 + v2
, n2 =

2u

1 + u2 + v2
, n3 =

2v

1 + u2 + v2
. (16)

The parameterization obtained by combining (15) and (16) might be of
some interest, since the offsets of the ellipsoid can be parameterized simply
by adding constant multiples of n = (n1, n2, n3)

⊤. More generally, if xh

and xg are parameterizations of two surfaces, then their convolution is
parameterized simply by xh+g = xh +xg, since E is a linear operator. The
support function representation produces parameterizations of surfaces
which behave nicely with respect of convolution.

Remark 2. Except for certain singular points, the curvature(s) of E(h)
can be analyzed with the help of the differential dxh, which is the negative
inverse of the Weingarten map of E(h), provided that h is C2. Conse-
quently, the principal curvature directions and principal curvatures can
be derived from the support function h and its second derivatives, cf. [13].
For instance, in the case n = 1 we obtain κ = (h+h′′)−1, where the prime
indicates the differentiation with respect to the arc-length parameteriza-
tion of the circle S

1.

§3. Computing Minkowski Sums

We apply the support function representation to the computation of Min-
kowski sums of planar and spatial domains. Two main problems need
to be addressed. Firstly, the support function of a general shape is not
known in a closed form and has to be approximated. Secondly, the support
function representation cannot deal with inflections and parabolic points.
Hence, the objects have to be split at these points.

We present two general methods. The first method, which is formu-
lated in the curve case, is based on a piecewise approximation of the
support function, while the second one, which is described for surfaces,
represents the input domains as unions of elementary domains.
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3.1. Using piecewise approximations

We describe two algorithms. The first algorithm converts a given planar
curve into an oriented set described by a piecewise support function repre-
sentation, via simultaneous G1 Hermite interpolation and approximation
of inner points.

Algorithm 1.

Input: A closed G1 curve c bounding a domain A, a finite dimensional
space of support functions H defined on S

1, along with a basis {βj}N
j=1.

Output: {[hi, Ui]}m
i=1, where hi ∈ H , Ui ⊆ S

1, such that the union of all
curves xhi

(Ui) is an approximation of ∂A and globally G1.

1. Split c into m segments segments ci, i = 1, . . . , m such that

(a) all inflection points of c are splitting points (i.e. none of interior
points of ci is an inflection), and

(b) the unit normals along each ci vary less then a prescribed constant
(i.e. the Gauss image of ci is sufficiently small).

Let bi, ei be the endpoints of ci.

2. Compute Ui as the Gauss image of ci, for i = 1, . . . , m. Let nb
i and

ne
i be the end points of Ui.

3. For each i, find hi ∈ H which minimizes
∫

Ui

(hi(n) − hexact
i (n))2 dn (17)

and satisfies
xh(nb

i) = bi and xh(ne
i ) = ei. (18)

where hexact
i is the exact support function of ci. After substituting

the basis representation

hi =

N
∑

j=1

βjci,j (19)

into (17) and (18), we obtain a quadratic objective function of the
unknown coefficients ci,j and 4 linear constraints, and the coefficients
can be computed by solving a system of linear equations. The integral
(17) and its derivatives are evaluated numerically.

Error bounds can be obtained with the help of (11) and (12).
Based on the approximate representation of the given curves, the sec-

ond algorithm computes the convolution of two curves.

Algorithm 2.

Input: Two oriented sets represented by the support functions with asso-
ciated domains {[hi, Ui]}I

i=1, {[gj, Vj ]}J
j=1.
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Output: The convolution, again represented by support functions with
associated domains {[fk, Wk]}K

k=1

1. Define I · J pairs of functions and sets

fi+(j−1)I := hi + gj , Wi+(j−1)I := Ui ∩ Vj (20)

2. Delete all pairs with Wk = ∅ from the list {[fk, Wk]}I·J
k=1.

In order to compute the outermost boundary of the Minkowski sum of
the two domains described by the given curves , we have to identify the
outermost part of the convolution. This can be done in three steps.

1. Find all self–intersections of the convolution.

2. Identify a suitable initial point. For instance, one may choose the
point with the minimum ordinate on all branches of the convolutions.

3. Trace the outermost boundary in a counterclockwise orientation, by
following the current branch of the convolution until it hits a self–
intersection. At self–intersections, choose the next branch whose tan-
gent has the minimum angle to the negative tangent of the incoming
branch. The tracing stops when we arrive back at the initial point.

Note that this approach does not identify inner boundaries of the Minkow-
ski sum, which might exist. More sophisticated algorithms for analyzing
the topological structure of the convolution are described in [3, 7].

Example 2. See Fig. 1. Here, the space H of support functions consists
of all polynomials in n1, n2 of maximum degree 6, restricted to the unit
circle. The dimension of this space is N = 13, and a possible basis consists
of all monomials n1

in2
j of degrees 5 and 6, i.e., 5 ≤ i + j ≤ 6. In the

first step of Algorithm 1 we split the left curve at 4 inflection points and
6 additional points into 10 pieces. The right curve, which is composed
of 8 circular arcs is split into 8 segments. The support function of the
left curve is approximated using the first Algorithm, while the support
function of the second shape is computed directly. Note that circular arcs
have linear support functions, since they can be seen as offsets of their
centers. The convolution of the two curves is obtained by applying the
second algorithm. It is composed of 38 segments. Finally we identified the
outermost boundary of the Minkowski sum of the two domains described
by the given curves.

3.2. Union of elementary domains

The second method exploits the fact that the operations ⊕ (Minkowski
sum) and ∪ (set union) commute,

(
⋃

i

Ai ) ⊕ (
⋃

j

Bi ) =
⋃

i,j

( Ai ⊕ Bj ). (21)
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A
∂A B

∂B

π2(∂A ⋆ ∂B)

A ⊕ B

∂(A ⊕ B)

Fig. 1. For two given planar domains (top row) we compute the (untrimmed)
oriented convolution of their boundaries (bottom left) and the boundary of the
Minkowski sum of the associated planar domains (bottom right), cf. Eq. (5).

–2

–1

0

1

2

–4 –2 0 2 4

Fig. 2. A planar domain represented as a union of two circles and an elementary
shape with a quadratic support function.

Consequently, if two domains are represented as unions of domains with
known support functions, which we will call elementary domains, then
their Minkowski sum can be obtained directly in the same representation.

Convex domains can be covered by convex elementary domains in a
relatively simple way. For non-convex domains parts it is possible to use
quasi-convex domains with non–convex segments of the boundary. Such
objects always contain segments with the opposite orientation, which have
to be contained in other elementary shapes, see Fig. 2.

This method seems to be particularly well suited for spatial domains,
since one does not need to define a partition of S.

Example 3. We computed the convolution of the boundaries of two non-
convex spatial domains, which are represented as the union of three el-
ementary domains, and a convex object without rotational symmetries.
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⊕

⊕

=

Fig. 3. Minkowski sum (right) of three spatial domains (left).

The domains and their Minkowski sum are shown in Fig. 3.

Similar to the curve case, the boundary of the Minkowski sum of the
three domains is contained in the convolution, and it would be of some
interest to identify the outermost part of the convolution, see [9]. For
certain applications, such as collision detection, the representation as a
union of elementary domains may even be sufficient.

§4. Conclusion

We presented methods for computing boundaries of Minkowski sums of
planar and spatial domains, which are based on the use of support func-
tions. Suitable spaces of functions can be defined with the help of spherical
splines, cf. [1]. Future work will focus on an improved treatment of inflec-
tions and parabolic points. E.g., in order to capture inflections of planar
curves, support functions with unbounded second derivatives are needed,
cf. Remark 2.
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