Divide-and-Conquer for Voronoi Diagrams Revisited
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ABSTRACT

We show how to divide the edge graph of a Voronoi diagram into

a tree that corresponds to the medial axis of an (augmenizaeiup
domain. Division into base cases is then possible, whichihén
bottom-up phase, can be merged by trivial concatenatioe. ré&h
sulting construction algorithm—similar to Delaunay tigafation
methods—is not bisector-based and merely computes dialbier
tween the sites, its atomic steps being inclusion teststis & cir-
cles. This guarantees computational simplicity and nuraésta-
bility. Moreover, no part of the Voronoi diagram, once cousted,
has to be discarded again. The algorithm works for polygandl
curved objects as sites and, in particular, for circulas arhich al-
lows its extension to general free-form objects by Vororiagcam
preserving and data saving biarc approximations. The ighgor
is randomized, with expected runtini¥n log n) under certain as-
sumptions on the input data. Experiments substantiatefimieat
behavior even when these assumptions are not met. Applisati
to offset computations and motion planning for general cisjare
described.

Categories and Subject Descriptors

F.2.2 [Theory of Computation]: Nonnumerical Algorithms and
Problems—geometrical problems and computations
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1. INTRODUCTION

The divide-and-conquer paradigm gave the first optimalt&oiu
for constructing the closest-site Voronoi diagram in thenpl [27].
Though being a classical example for applying a powerfubrtiy-
mic method in computational geometry, the resulting athanibe-
came no favorite for implementation, not even in the caseooftp
sites.

For Voronoi diagrams of general objects the situation isemor
intricate, as such diagrams may have all kinds of artifagtseir
edge graph may be disconnected, and their bisectors mapedcl
curves, which complicates the construction. In particutlae ab-
stract Voronoi diagram machinery in [18, 19] is ruled out.t-Li
erature tells us that divide-and-conquer is involved if bagis is
on the bottom-up phase, even if the sites are of relativehpk
shape. See the papers [21] and [28], respectively, for edgly-
rithms on line segments and circles, and the optiméh log n)
variants in [17] for line segments, in [30] for line segmeasl cir-
cular arcs, and in [7] for convex distance functions. Thex@sithe
missing separability condition for the sites, which wouldvyent
the merge curve from breaking into several components. Eisn
issue being solved, we still have to intersect complicaieddbors
and discard old parts of the diagram, which makes the algost
complex and hard to implement.

Many alternative strategies for computing generalizedoklor
diagrams have been tried. Incremental insertion cannoppkea
directly to general sites without loss of efficiency. In paurtar,
the framework in [19] for abstract Voronoi diagrams may not a
ply. Still, randomized insertion can be made efficient [3i heeds
pre-requisites like splitting sites into "harmless’ pieceach piece
then acting as several sites. The plane-sweep techniquéheon
other hand, generalizes nicely for line segments and sifd2]
but, unfortunately, not for circular arcs or more genertassiLine
segments have to be split into 3 sites to ‘domesticate’ this@ctor.
Many implementation details occur.

In fact, in all these algorithms the bisector curves takeipahe
computation. Already in the case of line segments, bisecos



composed of up to 7 pieces, and may even be two-dimensional if

not defined carefully in the case of shared endpoints. Suoh-si
tions cannot be considered degenerate; they occur ngtuhén
decomposing complex sites into simpler ones. Consequehty
algorithms are involved and also suffer from numerical iegpr
son. Difficulties may be partially eluded when working in theal
environment: Instead of intersecting two bisectors, thatereof
a circle tangent to the three defining sites is calculateds béars
the advantage of working on the sites directly, linking theroord-
ingly rather than computing new geometric objects that telues
take part in later calculations. The classical examplefisparse,
the Delaunay triangulation for point sites. For generassitan-
gent circles may not be unique. Up to 8 solutions do existctvhi
are usually difficult to calculate; see e.g. [11].

The algorithm we propose in the present paper works directly
the sites, too, but its atomic operation is much simpler, elgnan
inclusion test of a site in &ixedcircle. We first extract the com-
binatorial structure of the Voronoi diagram, and fill in thisde-
tor curves later on. In contrast to existing Voronoi/Delayiral-
gorithms, no constructed object is ever discarded. Ouingei$
very general: Sites are pairwise disjoint topological disk di-
mensions two, one, or zero. This includes polygonal sitesilar
disks, spline curves, but also single points and straiglet-$eg-
ments. Boundaries of curved planar objects with holes candze
eled. We do not split complex sites into pieces beforehaachise
we need not care about the bisectors.

Our idea is to calibrate the top-down phase of divide-and-
conquer by dividing the edge graph of the Voronoi diagranhauit

prior knowledge. A simple plane sweep is used to generaté¢ a se

of points whose removal from the edge graph leaves a geametri
tree. This tree is then computable as the medial axis of argene
ized domain that, combinatorially, behaves like a simpiyrerted
domain. While classical medial axis algorithms [20, 6, Shruat

be applied, not even in the presence of simple sites, we shatv t
the methods in [2, 1] are flexible enough to be extended to work
for such domains. In particular, the edge graph is splithierrin

a recursive manner, until directly solvable base casesirerithe
bottom-up phase is trivial and consists of reassemblingetpec-
tive pieces of the edge graph.

Applications are manifold. The two we sketch here use sites i
piecewise circular (PC) representation. This enablesangilan-
ning in PC-environments [31] which, compared to piecewise |
ear (PL)-environments, is shown to lead to shorter and ‘shesb
robot paths. Moreover, shape offset computations are daged
the fact that PC representations are closed under offgetGom-
pared to other offsetting algorithms that are based on \@irdia-
grams [16, 13, 4], our method is simpler because we compuye on
a combinatorial representation of the diagram for thisiappbn.

2. DIVIDING THE VORONOI DIAGRAM

Let us define the Voronoi diagram of general objects. Oussite
are pairwise disjoint and closedopological disks of dimension
two, one, or zero in the Euclidean plaR&. That is, a site is ei-
ther homeomorphic to a disk or to a line segment, or is simply
a point. This includes polygons, circular disks, and opdinsp
curves as sites. Here and throughout this papei$ ldenote the
given set of sites. The distance of a pointo a sites € S is
d(z,s) = minyes 6(x, y), whered denotes the Euclidean distance
function. As done e.g. in [3, 30], we define the Voronoi dia-
gram,V (S), of S via its edge graphGs, which is the set of all
points having more than one closest point on the union oftaks
Under the assumption that sites are represented in a rddsovay
(say, by real analytic curve pieces [9]), this geometripbri well
defined. An edge offs containing points equidistant from two
or more different points on the same sitds called aself-edge
for s. Theregionsof V(.S) are the maximal connected subsets of
the complement of s in R2. They are topologically open sets.

OBSERVATION 1. The regions o/ (.S) bijectively correspond
to the sites inS. Each site is contained in its region, and regions
are simply connected.

PROOF Letzx be a point in the regio® of V'(.S). To x there
exists a unique closest point, on the union of the sites ifi. (Oth-
erwise,z would be a point on the edge gragh.) The sites are
pairwise disjoint, so there is a unique site S with y € s. Sites
is the same for alt € R, becausel(z, s) is a continuous function
of z. This maps regions to sites.

Now, obviously, withz also the closed line segmeny is part
of R. This implies thatR is simply connected. In particular, we

The paper includes a theoretical and an applied part. We takehavey € R, which impliess C Rk and maps sites to regions[]

particular interest in sites represented by circular atineg, for
several reasons. The modeling power of such splines beatsfth
polylines, which results in a significantly smaller inputtaaol-
ume. Our algorithm naturally, and with almost no increasawsf
meric complexity, works for this case. Also, a stable appration

of the Voronoi diagram for algebraically complex originéés can

be guaranteed. If the number of sites is small compared touime
ber, n, of their describing arcs, the graph diameter of the medial
axis mentioned above tends to be linear, and our algorithms i
O(nlogn) randomized time. Experiments substantiate this behav-
ior with small constants, but also show that, in the case @ftpo
sites, the runtime is slightly larger. Thus, the simplictyd gener-
ality of our algorithm come at a price. Still, this is maybe fiirst
practical algorithm that works reasonably efficient for e pla-

nar sites. Existing practical methods, e.g. in [14, 10],cnefined

to polygonal inputs; curved objects, if accepted, are cdadeto
pol){gonal ones, blowing up the data volume in a non-linean-ma
ner:

"We recently learned that the VRONI Voronoi code [14] for gsin
and line segments has been extended to include circularasrcs
sites [15]. The underlying algorithm is incremental ingert End-

We thus can talk of the regiaof a site s, which we will denote
with R(s) in the sequel.

The differences to a bisector-based definition of the Vordie
gram should be noticed. Self-edges are ignored in such atdefin
unless the sites are split into suitable pieces. Such pieoagver,
share boundaries—a fact that, if not treated with care, meyrgse
to unpleasant phenomena like two-dimensional bisectors.

To get control over the unbounded components of the diagram,
we include a surrounding circld;, (or any other desired curve)
into the setS of sites. We can always choofen a way such that
each vertex o/ (S \ {T'}) is also a vertex o}/ (S). All regions
of V(S) are bounded now, except, of course, the redigir).

For later purposes, we intend to show that removal of certain
points on the edge grapfis breaks all its cycles. Finding such
points is nontrivial, in view of the possible presence of-gelges.

points of circular arcs have to be inserted prior to theirrde§
objects.

2Topological properties are meant to be relative to the diiven
of the considered object.




A

s

Dl
AO

—

<l

Figure 1: Domaind’ (right) obtained as the augmentation of a given domain)(eith a splitting diskD. The medial axis (dashed) is split

at the center oD.

For a sites # T', let p(s) be a point ons with smallest ordinate,
and denote witly(s) the closest point 0§ s vertically belowp(s).

By the boundedness @(s), the pointg(s) always exists. Without
loss of generality, let us assume thét) is not an endpoint of any
edge ofGs; this can always be achieved by rotating the coordinate
system slightly. We define a new geometric graph as

Ts = Gs \{a(s) | s € S\{I'}}. @

LEMMA 1. The graph7y is a tree.

PrROOF For each bounded region ®f(.S), the edge grapbs
contains a unique elementary cycle, because of the simpleece
tivity of regions (Observation 1). For the same reason, #ieob
cycles does not change if self-edges are ignored. Inténgipach
elementary cycle at a point vertically below its site leaaggomet-
ric forest, because no path can continue below any site. dere
as these points are assumed to lie in the interiors of edgés of
each point destroys only one elementary cycle. That is, mgétc
tree is obtained.

It remains to show that, for each site# I', the pointg(s) € Gs
does not lie on a self-edge for Recall thatg(s) is equidistant
from p(s) and from at least one other point, sgyon the union of
all the sites. The ordinate gfis smaller than the ordinate pfs),
because(s) lies vertically above(s). Thus, assuming that such
a pointy stems froms, which has to be the casegfs) lies on a
self-edge fors, contradicts the definition gf(s). [

3. AUGMENTED DOMAINS

Our next aim is to interpret the tré&g in Lemma 1 as the medial
axis of a generalized planar domain. In this way, we will beeab
to construct the Voronoi diagrai¥i(S) by means of a medial axis
algorithm, as if asimply connectedomain was the input. Usually,
the similarity between these two structures is exploitesl dther
way round: Medial axes are constructed as special casesafi®dio
diagrams.

Consider a bounded and connected two-manif§)chere just
called ashape in R2. An inscribed disk for3 is defined as a disk
which lies entirely in3. The set of inscribed disks is partially or-
dered with respect to inclusion. Timeedial axis transfornof B,
for short MAT(B), is the set of all maximal inscribed disks. Sim-
ilarly, the medial axis MA (), of B is the set of all centers of the
disks in MAT(B). Itis easy to interpretV (S) as the medial axis
of a planar shape. Simply take the surrounding ciftles part of
the shape boundary, and consider each remaining site5' as a
(possibly degenerate) hole. That is, we define

B=Bo\{seS[s#T}, @)
where B, denotes the disk bounded by The medial axis MAB)

is just the closurdof the edge grapbs of V(S).

Our goal is, however, a different one. We want to combinatori
ally disconnect the shap® at appropriate positions, such that the
medial axis of the resulting domain corresponds to the tesemh-
position7s of V(S). As observed in [9], a maximal inscribed disk
can be used to split the medial axis of a simply connectedeshap
into two components which share a point at the disk’s ceiter-
der to extend this result to general shapes, we introducedtien
of anaugmented domairits definition is recursive, as follows.

An augmented domain is a set together with a projection
ma: A— R2 Initially, A is the original shapés, and the asso-
ciated projectionr is the identity.

Now, consider a maximal inscribed digk of an augmented do-
main A, which touches the boundarfyA in exactly two pointsu
andv. Denote withuv andvu the two circular arcs which the
boundary ofD is split into. The new augmented shap€, which
is obtained fromA by splitting it with D, is defined as

A=A uD'uD?
where A° = {(z,0) | x € A\ D}, D' = {(z,1) | = € D},

andD? = {(x,2) | = € D}. See Figure 1 for an illustration. The
associated projection is

ma: A= R (2,4) — ma(z).

We say that the line segment.ih between point$x, i) and(y, j)
is containedin A’ if one of the following conditions is satisfied:

1. ¢ = j and the line segmenty avoidsoD,
2. {i,j} = {0, 1} andzy intersects the argv, or
3. {i,j} = {0, 2} andzy intersects the arcu.

For any two points(z,:) and (y, j) in A’, their distance now
can be defined. It equals the distanceraf(z) andm.4(y) in R?,
provided the connecting line segment is containedinand isco,
otherwise. An (open) disk i’ with center(m, ) and radius is
the set of all points ind’ whose distance tém, i) is less tharp.
Such a disk is said to biascribedin A’ if its projection intoR? is
again an open disk.

Having specified inscribed disks fot’, the boundary of4’ and
the medial axis (transform) ofl’ can be defined as in the case of
planar shapes. In particuldA’ derives fromd.A by disconnecting

%The reason why these two structures are not identical li¢lsen
possible existence of osculating maximal inscribed disks/A.
The centers of such disks, while belonging to A, are not part

of Gs. This subtle difference may be ignored for the purposes of
the present paper.



Figure 2: Oriented boundary of an augmented domain.

the latter boundary at the contact pointsand v of the splitting
disk D, and reconnecting it with the circular args andvu. This
process is depicted schematically in Figure 2. Note thatwvih4’
is traversed in a fixed orientation, the interior.4f stays on a fixed
side.

Concerning the medial axis, every maximal inscribed disidin
different from D corresponds to exactly one maximal inscribed
disk in. A", hence there is a bijection between MAX) \ {D} and
MAT (A)\ {D*, D?*}. The medial axis of4’ therefore is the same
geometric graph as MBA4), except that the edge of MAl) con-
taining the center oD is split into two disconnected edges which
both have the center dD as one of their endpoints. These two
points are two leaves of M@4’); consult Figure 1 again.

To draw the connection to the edge graphof V' (.5), the initial
shapeB3 in (2) is augmented withS| — 1 maximal inscribed disks,
namely, the ones centered at the poi(ts) € Gs, whereg(s) was
the vertical projection ontgjs of a point with smallest ordinate
on the sites. Denote with.As the resulting domain after these
|S| — 1 augmentation steps. We may conclude the main finding of
this section as follows.

LEMMA 2. The tree7s in (1) is the medial axis of the aug-
mented domaitds.

4. THE ALGORITHM

Using Lemma 2, the Voronoi diagrai(.S) can be obtained by
constructing the medial axis of the augmented doméin We
show how to computels efficiently, and how to construct its me-
dial axis without the need of calculating distances betwsants
in Ag directly. The resulting algorithm is very simple and lends
itself to robust implementation. It runs in optimal (randeed)
time O(nlogn) if certain quite realistic assumptions on the input
are met, and i (n/n) time in the unrestricted case. Its observed
runtime, however, is close to the former with rather smaitdes.

4.1 Computing the boundary of A4s

Consider the planar shag®in (2) whose augmentation has led
to the domainds. From the algorithmic point of view, augment-
ing B amounts to connecting its bounda®B to a single cyclic
sequence) As, that consists of pieces from5 and from circles
bounding the splitting disks. (One-dimensional sites iibuate
to 9B with two curves, one for either orientation, and the special

Figure 3: Voronoi diagram for point sites.

case of point sites can be handled consistently.) Each suafdb
ary piece is used exactly once 6ds, and traversing. As cor-
responds to tracing the medial axis tree (M) in preorder. See
Figure 2, where a shape having two planar sitegnd s, as its
holes is augmented with two disks, and the boundary of thdtres
ing augmented domain is oriented for better visualization.

The construction 0. Ay is trivial once the splitting disks are
available* The main task is, therefore, to find these digks one
for each sites; € S\ {I'}. Recall from Section 2 thab; is hori-
zontally tangent ta; at a lowest poinp(s;) of s;. The center(s;)
of D; lies on the edge grapis of V(.S) but, of courseD; needs
to be found without knowledge @s.

Indeed, a simple and efficient plane-sweep can be applied
follows. Sweep acros§ from above to below with a horizontal
line L. For a sites; # T, letz; be the abscissa @f s;), and define
Er(i) = s; N L. Note thatE'r (i) may consist of more than one
component. We maintain, for each sitewhose pointp(s;) has
been swept over, the sitg whereE, (j) is closest tac; on L. The
unique disk with north pole(s;) and touchings; is computed, and
the minimal such disk fos; so far,Dy, (i), is updated if necessary.
The abscissa:; is deactivated again whebP, (i) has been fully
swept over byL.

LEMMA 3. After completion of the sweef); (i) = D; holds
for each index.

PrROOF For a fixed index, let s, be the site that defines the
disk D;. We have to show thak';, (k) andz; become neighbors
on L while z; is active. Consider a point where D; is tan-
gent tos,. Then, becaus®; avoids all the sites, the line seg-
mentz;¢ C D; does the same. ThuS. (k) andz; are adjacent
when L passes through Also, z; is active at this moment, be-
causeD; C Dy (¢) holds. O

“4As a possible degenerate case, a splitting disk may havethrare
two points of contact with the bounda83. In that case, we may
choose any two contact points on different componentfThe
algorithm we are going to describe automatically yieldshsupair
of points for each disk.

as
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Figure 4: A mixed set of sites

To keep small the number of neighbor pairs, s;) on L pro-

| n || atomic stepg rationlog, n | ration(log, n)* |

507 6620 1.45 0.16
2070 32892 1.44 0.13
5196 91649 1.43 0.12

10474 199001 1.42 0.11
20488 417839 1.42 0.10
172198 4223178 1.41 0.09

Table 1: Five complex sites bounded hyircular arcs

course, not true foall possible distances.) Note that the artificial
arcs are used only to link the site segments in the corrediccyc
order; they do not play any geometric role. Computing a tsmdjt
disk takesO(n) time, if each object describing the sites can be
handled inO(1) time.

4.3 Practical aspects

In view of keeping the algorithm efficient, disks that spti¢tdo-
main.As in a balanced way are desired. Unfortunately, computing
such a disk with simple means turns out to be hard. We can, how-
ever, choose a disk randomly, by taking a random site segment
on dAgs as its basis. Objects ands and edges of MAAg) cor-
respond to each other in an (almost) bijective way, whicficag
to convey randomness from boundary objects to medial agiesed

cessed during the plane sweep, we only consider pairs wherepor the analysis, we thus may suppose that the cenérD lies

no other active abscissa,, lies betweenz; and E(j); the
disk Dy, (i) cannot have a contact beyond the onéf(m), oth-
erwise. The number of such pairs is linear. Thus the cortsbruc
can be implemented i) (n logn) time if the sites inS are de-
scribed by a total of: objects, each being managable in constant
time. Note thab.4s then consists 0B (n) pieces.

4.2 Computing the medial axis of As

Given the description of an augmented domain by its boundary
may, at first glance, seem complicated to compute its megisl a
In our case, however, the domaiis has a connected boundary.
Therefore it can be split into subdomains with the same ptgpe
using maximal inscribed disks. This suggests a divide-@ndiuer
algorithm for computing MAAs). The domain and its medial axis
tree are split recursively, until directly solvable bassesaremain.
For simply connected shapes, a similar approach has bedéadpp
in[2, 1].

In fact, it is easy to obtain splitting disks fos. Recall that
0As consists of pieces that bound inscribed disks (cai@dicial
arcg) and pieces that stem from site boundaries (catliéel seg-
ment$. Now, to calculate a splitting disk, the algorithm fixes gom
pointp on a site segment and computes a maximal inscribeddisk
for As that touche®.4s atp. Starting with an (appropriately ori-
ented) disk of large radiu$,As is scanned and the disk is shrunk
accordingly whenever an intersection with a site segmeaotirsc
Intersections with artificial arcs are, however, ignored.

LEMMA 4. The algorithm above correctly computes the re-
quired diskD for Ag at pointp.

PrROOF From Section 3 we know that the set of maximal in-
scribed disks is the same fots and for3, except for the (finitely
many) disks taking part in the augmentation. The assertion f
lows. [

In other words, the distances to the sites which are needie in
medial axis computation are the samedg and inB. (This is, of

on every edge of MAAs) with the same probability. Under the
assumption that the graph diameter of kM) is linear inn, the
pointc lies on the diameter with constant probability, and (M)

is split atc into two parts of expected siz@(n). A randomized
runtime ofO(n log n) results.

The assumption above is realistic in scenarios where a small
number of sites is represented by a large number of indiViolora
jects. The required accuracy for approximating the sitea tiipi-
cally leads to an input size that is independent from the dirizg
of MA(As). In particular, if biarcs are used for approximation
(see Section 5) then the number of leaves (hence also theemumb
of vertices) of MA(As) is determined by the original sites and not
by the number of biarcs used. Our tests report small corsstant
the O(nlog n) term in this case. See Table 1, where step counts
are averaged (and rounded) over 40 different equal-sizadsn

| n || atomic stepg rationlog, n | ration(log, n)* |

400 7591 2.20 0.25
2000 54662 2.49 0.23
4000 143391 3.00 0.25

20000 1015149 3.55 0.25
40000 2659149 4.35 0.28
200000 19820012 5.63 0.32

Table 2: Uniform distribution of. point sites

The other extreme is the case wfpoint sites. Here, by the
way how.Ags is constructed, the diameter of MA.s) will be typi-
cally much smaller, because many long ‘vertical’ branchiisam-
anate from the surrounding cirdé As a simple heuristic, we may
choose a small number of splitting disks tangerit fast, and con-
tinue with randomly splitting the resulting augmented suhdins.
This (almost) yields an observe®(n log? n) behavior, with very



[ w[[ALG[ CGAL] n [ ALG | CGAL |
1714 0.3 6.3 100 0.14 0.26
5622 11 42.6 500 0.8 15

25210 4.7 651.6 1000 2.2 3.1
116460| 23.5| 19650.5 5000 13.7 18.5
250366| 57.8 >24h 10000| 39.3 37.6
537360 131.1 | > 1 week 50000 | 395.3| 201.6

(a) 40 complex sites (b) Many small sites

Table 3: Comparison to CGAL demo program. The sites are polyg
onal and are bounded by a totalwfine segments. Runtimes are
measured in seconds.

small factors; see Table 2. We took uniformly distributednpo
sites — an input likely to avoid long paths in MAls) and thus
slowing down the algorithm. Note that, for point sites, Kiys) is
basically the (piecewise-linear) medial axis of a unionisks, the
augmenting disks plus the splitting disks.

Domain splitting could be combined with local tracing, asi€o
in [2], to guarantee a®(n+/n) expected time. However, the sim-
ple randomized version performed best in all our tests. We im
plemented the algorithm to accept circular arc input in its@nt
version, including (though not optimizing) the handlindioé seg-

ments and points. The Voronoi diagrams in Figures 3 and 4, and

also the structures in Figures 8 and 9 in Subsection 6.2 hese b
produced by this code.

An excerpt of our experiments for point sites and circulasar
is given in Table 1 and Table 2. For input size the number of
atomic steps is listed along with its ratio to the functiernieg, n
andn(log, n)?.

The atomic step needed in Subsections 4.1 and 4.2 is andoters
tion test of a site-describing object and a given disk. Thimong
the simplest imaginable tests when a closest-site Voroiagirdm
is to be computed by means of distance calculations. Neithees
touching three given sites, nor intersection points of tigettors,
have to be calculated, apart from (but only if desired in)lihee
cases delivered by divide-and-conquer. This reduces timerical
effort and liability to errors caused by such operationscivthem-
selves get rapidly complicated with the algebraic compyexd the
sites; see e.g. [11]. We used CGAL [5] to implement the atmpic
eration for sites described by circular arcs (the inteiseaif two
given circles).

Table 3 displays the CPU times we measured for polygond site
as input to our algorithm (columns ALG), in comparison toitele
evant CGAL demo package for polygons (columns CGAL). While
our algorithm is way faster in the case of few but large sitespe-
havior of both implementations is similar in the case of mamall
sites.

The structure and variety of the base cases depend on tke site
For point sites, there are only two of them, if the surrougdiir-
cleT is handled symbolically. They are of the simple form shown
in Figure 5. (Artificial arcs are drawn dashed.) For circudac
splines, we get four generic base casegfbrcontinuity and nine
additional ones for’® continuity; see [1]. These numbers do not
increase for polynomial splines of higher order. Solvingagcase
includes calculating the equations describing the bisecorves.

Note that the algorithm allows us to separate geometric from
combinatorial issues. If one is interested only in the toglal

Figure 5: The two base cases for point sites.

structure ofV (.S), then the base cases need not be resolved at all,
because the type of a base case already determines the dégree
the involved Voronoi vertices.

5. SITE APPROXIMATION

We put particular emphasis on circular arcs as sites, becaus
no practical algorithm for constructing their Voronoi diag is
available, and our algorithm naturally offers the abilityltandle
them. Moreover, so-called biarcs enable a data-inexperesid
Voronoi diagram preserving approximation of general potyral
spline curves, as is described briefly below.

A biarc is the concatenation of two arcs which meet with a com-
mon tangent at a joinf. It connects two given endpoinis), p1
with associated tangent vectofs, t1, possibly sampled from a
given curve. There exists a one-parameter family of biarakh
ing these data, and the locus of all possible joihis a circle.

Several different choices for the joint of a biarc are meghih
see e.g. [23, 29]. The equal chord (EC) biarc generates tecgial
length, whereas the parallel tangent (PT) biarc makes tigetd
at the joint parallel to the ling@op:. The intersection (IS) biarc
determines/ by intersecting the joint circle with the given curve.
The spiral (SP) biarc chooses one of the arcs as a segment of an
osculating circle of the given curve.

For data sampled from a smooth boundary segment of a site, the
Hausdorff distance between the biarc and the segment desrea
with the biarc lengtth. Table 4 provides the Taylor expansions of
the errors, where:; is thei-th derivative of the curve’s curvature
with respect to the arc length parameter at the point of éster
see [25] for more details.

Comparing the different methods for biarc interpolatiorirst
observation is that all four methods provide the optimaragimna-
tion order3 (for non-circular input). Consequently, when the tol-
erated maximum errar is decreased, the numberof arcs grows
moderately©({/1/¢). This is much less than the number of line

segments needed to get the same accuracy, whighyél /<). The

Type Maximal distance error (up t©(h®))
EC |max (|355h° — 552"l | — 350" — 5& 1)
PT | max (| + 350" + ‘S’j'f;;%:zhﬂ)
IS | max (|g55h* + 37;828 WY | = g57h® — & ht)
SP||-sh’ — 0’|

Table 4: Approximation quality of biarcs



Figure 6: (a) Definition of the trimmed offset, (b) segmeiniaf the edge graph (additional arc endpoints are mark#u-yi (c) segmen-

tation of the shape, (d) offsets of subshapes.

number of needed sample points eve®id /<). For high accura-
cies, the use of circular arcs for site approximation thasi$eto a
significantly smaller data volume.

Note that the constants At are identical for EC, PT, and IS. An
analysis of thex* terms (see Figure 7) reveals that the IS method
performs better than EC or PT in most situations, exceptHer t

2 2

case;% < ko < 172:01 where PT is better. In the case of SP, the
constant of thé:* term is(2)? times larger. Consequently, when
approximating a site with spiral biarcs, the number of sayme
needed to achieve the same accuracy is roughlmes larger. The
experimental data listed in Tables 5 and 6 in Subsectiondil@ct

this fact.

On the other hand, the approximation of sites by spiral biarc
guarantees convergence of the Voronoi diagram. More migcis
the error of the Voronoi diagram 8(n~?), wheren is the number
of biarcs. This can be proved by extending the argumentd ifiof2
the convergence of the medial axis and using the observtain
the leaves of the edge graph correspond to self-edges otdlse s

According to our experience, in most cases the first threestyp
of biarcs preserve the curvature distribution too. Thislse gup-
ported by theoretical results [24]. So all biarc schemesvaete
suited for fast approximate Voronoi diagram computationar®
approximations of polynomial spline curves can be foun®{m)
time, by simple bisection or iteration algorithms.

6. APPLICATIONS

To document the practicality of the Voronoi diagram aldarit
let us briefly describe two of its appications.

6.1 Robot motion planning

Motion planning is among the classical applications of gahe
ized Voronoi diagrams [30, 3, 22]. It is based on the obs@mat
that moving on the edge graph keeps the robot locally awan fro
the sites (obstacles) as far as possible.

We may use the Voronoi diagraii(S) of a setS of cir-
cularly approximated sites as a tool for planning a robot mo-
tion in a piecewise-circular environment [31]. Compared’to
environments, this offers several advantages. The edgés afe
still of degree only two—all types of conics can occur now-+bu
a more data-saving approximation of the real scene is gtedn
by the results in Section 5. Not only c&1(.S) be computed more
quickly now, butGs also will consist of significantly fewer edges,

K1 /Ko

Figure 7: Coefficients oh* in the maximal errors for the biarc
types EC, PT and IS. The lower envelope gives the smallest err

namely,@(n%) instead ofn. This leads to a more compact descrip-
tion of the paths the robot is supposed to move on. Anothéurfea
not shared by PL-environments is that the paths are lo¢#llpe-
tween any two sites witi'* boundaries, except for junctions with
self-edges.

Note that, in order to keep maximal distance to the sites ithe
robot will not move on self-edges &f(.S). Such edges thus can be
pruned before planning a motion (with possible exceptidosecto
start and target of the robot). As self-edges are the ontepihere
leaves ofl/(S) are present, the convergence spee® (i ?) of
the relevant parts of the Voronoi diagram is ensured.

6.2 Trimmed offsets

Offsetting is a fundamental operation for planar shaped,itsn
needed frequently, e.g., in computer-aided manufactlfi6g26].
Several authors base their offsetting algorithms on thenairdia-
gram or the medial axis [16, 13, 4]. Once more, a PC-repratent
of the input shape is advantageous, because the class cftsobs
is closed under offsetting operations.

Our Voronoi diagram algorithm is particularly well suiteaithis
task, because it delivers the necessary combinatoriaitateiwith-
out computing the edge graph explicitly. Depending on tiiea-



(a) Complete shape

(b) Detail with axis

Figure 8: Shape, offset, and edge graph details.

tion, we can compute the inner or the outer offset of a givamaul
shapeA. For inner offsets, we take the outer boundary.bfs
the surrounding curve (replacing the cir@le and the holes ofd
as the sites. For outer offsets, we compute the inner oftfetse
complement of4 within a suitable disk coveringl.

Let A be a shape given in PC-representation. {thenmed in-
ner) offsetof A at distance is defined as

A=A\ |J D(=,0)

€A

whereD(z, ¢) is the disk with centeg and radiug; see Figure 6a.
Its boundaryd.4° consists of circular arcs again, which are off-
sets of the circular arcs ifA. However, simply offsetting).A
does not gived.A°, since self-intersections may be present. We
use the corresponding Voronoi diagra¥(.S), to trim away these
self-intersecting parts.

We first define certain subshapes of the shagie consult
Figure 6 (b) and (c). The edge gragly consists of conic seg-
mentse;, each being the bisector of two ares anda?. For a
point z on either arc, consider the segment of the normal which is
contained ind and connectg with e;. The union of these line
segments forms the subshage C A associated witl;. In addi-
tion, each leaf; of Gs defines a subshapé; as the circular region
consisting of all line segments which connect the pointdefarc
with its centerp;.

A subshape; is said to benonotonidf the radii of the maximal
disks of A with centers ore; have no inner extrema. The extremal
radii rmin, rmax are then realized at the boundaries. Depending on
the position (respect tal;) of the line L spanned by the centers
of the arcsa}, a2, the radii have no, one, or two extrema. The
subshapes associated with leaves are already monotortie tid
for splitting into monotonic subshapes we simply intersggta?
with the line L, rather than computing the bisector of these arcs.

The offsetting is done separately for each monotonic syjesha
If & < rmin, then the offsets of the arcs at distacare fully con-
tained iNOA?. FOrrmin < & < Tmax, the offset arcs are trimmed
at their intersection; see Figure 6d, bottom. Finally;if. < 4,
then the subshape does not contributé 43 .

An implementation shows that offset computations requily o
little additional time after the Voronoi diagram constioat Ta-

Error SP PT| Diagram Offset
k-1071 732 468 0.07 0.02
k-1072| 1230 916 0.16  0.04
k-1073 | 2656 1860 0.30 0.07
k-107*| 5678 3872 0.64 0.15
k-107° | 12044 8156 1.39 031

Table 5: Numbers of arcs (left) and runtimes (right) for thagse

in Figure 9. The biarc types SP and PT have been used. Times
are given in seconds for the type PT on a Pentium IV 2.8Ghz. The
parametek is a constant related to the bounding box of the input.

Error SP PT| Diagram Offset
E-1071 9440 8768 2.24 0.29
k-1072 20132 17080 4.08 0.56
k-1073 43332 34008 7.14 1.03
k-107* 93224 69312 17.10 2.06
k-1075 | 201688 143348 29.53 4.25

Table 6: Arcs and runtimes for the shape in Figure 8.

=4

Figure 9: Inner offsets for different values af



bles 5 and 6 give two examples. The total time thus will not in-

crease much in applications where many different offsetriaare

needed. Note the difference in the numbers of biarcs neasled t

reach a given accuracy for both shapes.
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