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Abstract

Isogeometric analysis (IGA) is a numerical simulation noethwhich is directly based on the NURBS-based
representation of CAD models. It exploits the tensor-pmdiructure of 2- or 3-dimensional NURBS objects to
parameterize the physical domain. Hence the physical dommgarameterized with respect to a rectangle or to a
cube. Consequently, singularly parameterized NURBS sesfand NURBS volumes are needed in order to represent
non-quadrangular or non-hexahedral domains withouttiygit thereby producing a very compact and convenient
representation.

The Galerkin projection introduces finite-dimensionalg@saof test functions in the weak formulation of partial
differential equations. In particular, the test functions usedogeometric analysis are obtained by composing the
inverse of the domain parameterization with the NURBS bisistions. In the case of singular parameterizations,
however, some of the resulting test functions do not neciésiadfill the required regularity properties. Conseqtign
numerical methods for the solution of partiaffdrential equations can not be applied properly.

We discuss the regularity properties of the test functi®as.one- and two-dimensional domains we consider sev-
eral important classes of singularities of NURBS paraniedéons. For specific cases we derive additional condition
which guarantee the regularity of the test functions. Initt@ldwe present a modification scheme for the discretized
function space in case of inicient regularity. It is also shown how these results can Ipdieghfor computational
domains in higher dimensions that can be parameterizedwgaing.

1. Introduction

The product development process in engineering often\wwegiwo major phases. In the first phase, a geometric
model of the product is constructed. This is based on tools fLomputer Aided Design (CAD), where the geometry
is represented by B-splines or by non-uniformrational Bags (NURBS). The second phase deals with the numerical
simulation of processes such as heat transfer, the congrutdipressure or stress distributions or the analysis af flu
flow. This simulation phase is usually performed numenjcayl means of the Finite Element Method (FEM).

The classical finite element method works on meshes, corgist geometric primitives like triangles, quadrilat-
erals, tetrahedra or hexahedra. Therefore one has to degtiea computational mesh from the NURBS representation
of the geometry. The isogeometric method, introduced byhgsaget al. [1], does not need this transformation step,
since it directly uses the NURBS representation to build éymation space for numerical simulations.

Various applications of isogeometric analysis (IGA) haeer studied so far, for instance problems in fluid dy-
namics [2—-4], in shape optimization [5—7] and modeling tledodnation of solids [8-10]. Contributions to the
theoretical background of the isogeometric method tremntimerical analysis concerning consistency and stability
of the method [11-14]. Usually, the case of singularly patarized domains is not covered.

Nevertheless, singular parameterizations are of greafandbe modeling of physical domains and have to be
treated separately. Singularities in the parameteriaaiim be caused by distortions of regular parameterizations
by intrinsic properties of the geometry, which cannot ba@ded in many situations. Since higher dimensional NURBS
possess a tensor-product structure they can only desardmangular or hexahedral domains directly without the use
of singularities. If a single-patch parameterization isdu® directly represent a non-quadrangular or non-hexahed
domain like a circle or a sphere, then singularities are seag [15-17]. A dierent approach to represent general do-
mains uses the concept of weighted extended B-splines $piites) introduced in [18]. In that case a spline space is
defined on a larger domain which is then properly trimmed ¢édatbundary of the desired domain. Customly trimmed



surfaces and volumes are also widely used to parameternimaids without using singularities. Since stability issues
might occur for function spaces on trimmed domains, we danadhto the details of trimming techniques.

We will consider isogeometric analysis as a solution mettowcpartial diferential equations. In this context
we focus on equations that lead to the underlying functicacepH! and H2. The spaceH? is the basic function
space when considering variational formulations of seaodér partial diferential equations. The function spadé
is needed when considering certain higher order equatsuty as the biharmonic equation, which may occur for
applications in linear elasticity theory or in Stokes flowds.g. [19] for an application in isogeometric analysis).

In this work we do not consider NURBS but restrict ourseh@®tsplines. The results that are obtained for
B-splines can be generalized to NURBS parameterizatidfiflifig certain conditions as defined in Section 3.3 of
[14]. The focus lies on the applicability of the numericalthwls in the case of singularly parameterized domains.
We concentrate on the regularity properties of isogeomedst functions. An isogeometric test function is the com-
position of a B-spline with the inverse of the domain parasrigation. Since the parameterization is assumed to be
singular in some points the test function may not be well @efirHence it may not be ficiently regular. For various
cases some of the test functions are not in the desired umsgiace, in our cagéd! or H2. TheH-case has been
analyzed in [14]. In the present paper we concentratél®megularity. While many of the techniques used in the
previous paper are still applicable, the theory and theltebacome much more complex.

There exist results concerning isoparametric elementsgirigularities in the context of finite element methods.
In [20, 21] singular isoparametric finite elements are usepproximate singularities in the solution. The results fo
such finite elements could be generalized to B-spline paeimations, but the problems and results presented there
differ from the problems considered in this paper. There alsd sgime results for degenerated finite elements (e.g.
[22, 23]) where bounds for interpolation errors are stat€de results presented there are related to this paper but
cover only bilinear elements and cannot be generalizedttiir higher degree patches.

The next section gives a short introduction to isogeometnalysis. In Section 3 we develop the theory far 1
domains and in Section 4 fo2domains. Section 5 presents a framework to analyze regufaoperties for more
general domains using the concept of structural equivaldrioally we conclude the paper with a short summary and
an outlook to topics that may be of interest for future resiear

2. Preliminaries

In this section we will present the basics of isogeometriglysis. We will adopt the same notation as in [14];
some of the definitions will be recalled now.

2.1. Variational formulation and Hnorms

LetQ c RY be ad-dimensional domain and 164 (Q2) , Vo (Q) € V (Q) be certain subsets (defined by imposing
suitable boundary conditions) of a Hilbert spaiR€). Given a bilinear forma(-,-) : V4 x Vo — R and a linear
functional(F, -) : Vo — R we consider a variational formulation of a partiaffdrential equation:

Findu € V4 (Q) such that(u,v) = (F,v) Y ve Vo (Q).

We refer to [24] for a more detailed analysis and descriptibtihe problem. We will restrict ourselves 8 (Q2) =
HY(Q) or vV (Q) = H?(Q) as the underlying Hilbert space. The function spa¢&f) andH? (Q) are defined by

Hl(Q)z{veLZ(Q) eLZ(Q)v1<k<d}
and
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where the derivatives have to be interpreted in a weak s&Visie the use of théd*- andH?-seminorms

d 5\l/2 d Py 2 \1/2
V|2 = { ] and ||z = [Z ]
k= L2

= || 0&déi
2

H2(9)={Ve|-| Q) : LZ(Q)v1<|k<d}




the Hilbert space norms iH! andH? are defined via
IV = IMIE2 + IV and M, = IMIE, + ME: + V. -
It is obvious that these norms are well-defined if and onliéf tunction is inH* or H?, respectively.

2.2. Galerkin discretization in isogeometric analysis

The isogeometric method is an approach to discretize pdiftarential equations on non-trivial geometries de-
rived from CAD systems. It is based on Galerkin’s principiajch can be interpreted in the following way. Having
a finite-dimensional function spacé, < V the spaces/gn = Vg N Vy andVon = Vo N Vi, are set up to solve the
following discretized problem:

Find un € Vgn(Q) suchthat a(un, Vi) = (F, Vh) YWh € Von (Q).

The choice of the discrete subspékg (or its basis functions) is called a Galerkin discretizatitn our setting the
basis functions spanning, are constructed from B-splines, which are piecewise patyiats, defined over some
parameter spad® C RY. For a precise and detailed theoretical background on Bephnd NURBS in computer
aided geometric design we refer the reader to [25-27].

Let B; , be theith B-spline of degre@ € N with the knot vectol® = (6o, ...,0m-1). The parameter space is

set to be B= |6, m-p-1|, which covers the support of each B-spline, except for thendary intervalgéo, f,| and
[em—p—b 9m71]-

In order to extend the concept of B-splines to two dimenstorescan introduce bivariate tensor product B-splines.
Consequently, a degree and a knot vector is set for eachtidimedVe consider a degrge= (p1, p2), a knot vector
0 = (6W,0@), with @@ € R™ and®®@ e R™, and se{ny,n;) = n = m - p — 1. Using the notatioi = (i, j) and
x =(xy)", then B, is theith bivariate B-spline of degrgeand knot vecto® for 0 < i < n— 1. The parameter space
B is defined by

B = |6, o

B O] X 6705

p1° mz—Pz—l[ :

In order to compactly describe our results, we will use atimtavhich is independent of the dimensidof the
physical spac€, but follows the notational standards for the multivariedse.

Without loss of generality we choose the parameter doméie thed-dimensional open unit ba& = 10, 1[¢. We
set the index spadeto

I={ieN':0<i<n-1}.
The parameterizatio® of Q is defined by
G:B - RY: xm ZPi¢i(X),

i€l

with B-spline basis functiong; = B, : B — R and control point®; € RY for eachi € I. The physical domaif is
represented as the image®finderG, i.e. G (B) = Q. We consider basis functions

¢i:B —- R: xm Bip)

on the parameter space. In case of a bijective and contihudifferentiable parameterizatid (with C*-inverse)
the test functions, i.e. the basis functions of the funcspaceV), c {v: Q — R}, are defined by

it Q — R: £ ¢ oG L)

on the physical domain. Figure 1 illustrates the definitibthe functionsG, ¢; andy;.
Now we can define the isogeometric space of test functione@phiysical domain by

Vi = span; {Bip o G™}.



G=2Pidi

Figure 1: Two-dimensional parameterizati@nwith parameter domaiB, physical domair2 and basis functiong; andy;

In order to obtain well-defined functions on the physical donthe parameterizatio® has to be invertible in the
open boxB. Nonetheless it may be singular in some poigts B. We assume that the parameterizat®is bijective
in the interior of the parameter space. In practical appbos it might happen that overlaps occur in the geometry
mapping, i.e. the parameterization is not bijective. Itas clear how to define proper function spaces on overlapping
domains. Considering this kind of singularities would esat¢he scope of this paper.

We analyze the test functions from isogeometric analysibempresence of singularities in the parameterization.
It might happen that some of the test functignslo not fulfill the required regularity conditions. In manypdipations
conditions likey; € H* ory; € H? are needed. Therefore we restrict ourselves to the studyeddt- andH2-norm
integrals.

2.3. Evaluation of Hseminorms (i 1,2)

Our first aim is to find convenient representations for thegrainds in order to bound the integrals. In the case
of a regularly parameterized domain all integrals will beibded as long as theftBrentiability of the spline space
is suficiently high. This is not generally true if singularitiesoni. First we provide representations for tHé- and
H2-norm integrals. Hence our aim is to take a closer look at tjuaes of thé.?-norm

G 1)

theH-seminorm

d

Wiy = [ )y (5 (§)) )

and theH2-seminorm

d 62¢i 2
Wil = fgn;l(afnafm (f)) « ©

of the test functiony;. LetJ = detVG be the determinant of the Jacobiar@fSince the parameterization is bijective,
the Jacobian determinadis bounded from above by some constawind from below by 0. A transformation of the
integral (1) to the parameter space leads to

Wi = [wn@d = [ 6002300 x

which is bounded in any case. Therefore all test functioasralr? (Q2), even in the case of a singularly parameterized
domain.

The square of thel*-seminorm (2) can be transformed to a representation oreatteeneter domain, as described
in [14].



Lemma 2.1(see [14]) For ¢ = ¢; o G~ we have

1
Wilfinq) = f ICOfVGV4* 5 dx,
B

whereCofVG is the matrix of cofactors d7G.

The essential term of theg2-norm is the integral (3). We obtain the following result.
Lemma 2.2 For y; = ¢; o G~ we have
d

d d
2 3 2 1 _ . " _ !
|¢||H2(Q) = jl; E (Nmpn) 35 dx, where N, = Z CimCin J6X13Xi Z c

mn=1 =1 ko1 % Xj0% |’
The matrixC is the matrix of cofactors 0f G, i.e.
(C.)),,, = Cotve,
and J is the Jacobian determinant.
Proof. The proof of this statement is postponed to Appendix 6. O

Note that Lemmas 2.1 and 2.2 are valid for any choiceé ahdG fulfilling certain smoothness conditions. The
functionsg, G and the inverse d& need to be twice continuouslyftirentiable in the interior of the parameter domain
B and of the physical domai@, respectively.

Until now all the results are valid for general domains simeedid not specifically consider a singularly parame-
terized domain. In the next two sections we analyze the behaf/the integrands in the presence of singularities for
one- and two-dimensional domains.

3. Singular parameterizations of a line

In this section we consider a one-dimensional physical diofa For this we prove regularity results and intro-
duce a modification framework for the IGA function spaces.

3.1. Regularity analysis
We analyze théi!- andH2-seminorms of the test functiogs. TheH!-seminorm integral (2) simplifies to

L (g )
W’ilal(g) =f(; G (X) dx.

The following theorem recalls earlier results for a specias of singular parameterizations.

Theorem 3.1(see [14]) Leta € Z*, with 2 < o < p. If the parameterization G is regular forx 0 and the control
points satisfy

e Pb=0,forO<i<a-1,and
L4 P(Y?&Oa
then

o Y g HH( Q) forO<k < L%J and

o Y e HL(Q) fork > |4].



Thus, if a singularity occurs at the boundary of the domaia ttucoinciding control points then approximately
half of the corresponding test functions are natih A more drastic result can be shown for tHé-case. The general
representation of thiel?>-seminorm integral (3) simplifies to

L1824 0G  9g; °G\ (9G\°
12 _ - Aare_ Az = =
Wilke "fo (ax2 ax o axz) (6x) dx @

Using this representation, we can prove the following.

Theorem 3.2 Consider again the situation of Theorem 3.1« & p then

o Y ¢ H2(Q)for 0 < k < min(| 222, p) and

o Yy € H2(Q) for k > min([%J, p).
If @ = p then

e Yy¢ H>(Q)for0O<k<p-1land

o Yy e H2(Q) fork > p.

Proof. We first go through the details for the case< p. It is obvious thaiy, € H?(Q) for k > p. It follows from
Theorem 3.1 thap, ¢ H? (Q) for k < {%J It remains to be shown is that tt#-seminorm ofyy does not exist for

{%J < k< |22 and thatitis bounded fgf32 | < k < p. The bounds for thei?-seminorm follow the same scheme
as in the proof of Theorem 3.1, which can be found in [14]. Tavprthe existence or non-existence of the seminorm

is technical but follows directly from the representatidiiee H?-seminorm (4), i.e.

> NG
|¢k|H2(Q) =£ ﬁdx’

and of the asymptotic behavior of numeratgraind denominatod® in the neighborhood of the singular poigt= 0.
It follows directly from the asymptotic behavior & and¢y that there exist constan®andCy with J ~ Cx*~* and
Ng ~ Cx***3. Hence the integral is bounded if and only if@+ k — 3) > 5(a — 1), which is equivalent to the
statement of the theorem. Note thNit ~ Cx**%=2 is not true fora = p. The caser = p can be proved similarly so
we do not discuss it in detail here. O

Unlike Theorem 3.1, Theorem 3.2 states thattonly test functions corresponding to collapsing colptmints but
also functions corresponding to adjacent control points aot syficiently regular This is of great importance since
it has to be taken into account for all practical implemeates.

3.2. Modified test functions

We identified situations where some test functions do ndillftde necessary regularity conditions. Therefore,
modification of the function spac#}, is necessary. The following theorems state that linear caations of the
test functions can be used to build function spaces whidill file regularity conditions. In the case bf* as the
underlying function space, the following result can be acéd.

Theorem 3.3 (see [14]) Consider again the assumptions of Theorem 31lAL e [%J and define

Ay
a1 ()= i (x).
i=0

Let

(Vh,l = Sspan <i<n-1 {'ﬁi,l}



with
Ya 1) = odan (Gfl (f))
via@ = ¢(GE) for Ai+l<i<n-1

The modified function space fulfifig,; € Vi, N H! (Q). The function spac®,; contains all linear functions.

If we considerH2-norms, then we will have to sacrifice more degrees of freetham in theH'-case. However,
two test functions fulfilling the regularity conditions cha reconstructed. This approach is presented in the faipwi
theorem.

Theorem 3.4 Let all assumptions of Theorem 3.1 be valid, let-Amin(| 3¢ |, p) and define

Ao P
dr-12(X) = Z (1 I )¢i (X)

i=0  Prax
and
Ay Pi

Gmo2 () = Z; 4 (¥,
where Rhax = MaX<i<a, {Pi}. Set

Vh2 = span, 1112 ()}
with

Un-12(8) = da-12 (G_l (f))

Un2@) = da2 (G_l (5))
Vi@ = ¢(GE)  for Ag+l<is<n-1

The modified function space fulfifig,» € Vi, N H? (Q). The function spac#» contains all linear functions.

Proof. The proof of this theorem consists of two parts. First onetbasiow thaty; » (¢) € H2(Q) forall A, -1 <i <
n— 1. This follows directly from Theorem 3.2 for> A; + 1. Since

Pa2(X) = % {G - > P (X)]

ax i>A2

we have

Un2(é) = : {f - > P (5)),

Prmax P
which is inH? (Q). Similarly,

Un-12=1—-ypn,2— Z Yi

i>A2

fulfills ya,-12 € H2(Q). Finally we show thatV» contains all linear functions. We have

Pratia2 () + ) Pt (6) = &,
i>Ay
hencet € V. Obviously 1€ Vy,, which completes the proof. O
7



Figure 4: Basis of the function spafé,; ¢ H! (Q) Figure 5: Basis of the function spafé,» ¢ H? (Q)

Both theorems state that we can modify the function spacedardo get the desired regularity. In both cases,
however, we reduce the available degrees of freedom, whightidead to worse approximation properties.
Finally we present an example of a singular parameterizatio

Example 3.5Let p = 4 be the degree and I€& = (O 0,0,0,0,3,1,1,1,1, 1) be the knot vector of the B-spline
parameterizatio®. The control points fulfill

Po=P;=0, P,=1 P3=2 P,=3 and R =4

Figure 2 shows the basis functiopson B = ]0, 1] and Figure 3 shows the test functiogison Q. The next two
figures show the basis functions of the modified function spaEigure 4 shows the basis of the function spige

as presented in Theorem 3.3. Figure 5 shows the basig, efas presented in Theorem 3.4. It can be seen that the
number of basis functions decreases if higher regulariteeded.

4. Singular parameterizations of planar domains

Until now we only considered one-dimensional domains. Bintiesults for two-dimensional domains will be
presented in this section.

4.1. Regularity analysis
We consider the integrals

2 19 i i
|¢,i|ﬁ1(m=fgnz:;(a—;) d¢ and [Wilfeq) = fZ (agnggm)

whereQ = G (B) with B = 10,1[2. In order to simplify the representation of the integralsimeoduceF; as the
parameterization of the graph ¢f, i.e.

Fi () = (G1(x), G2(%) . i (x))" -

We denote partial derivatives of the surfagenith superscript indices, i.e.

FY 0 = 5 09

and
0%F;
OXKOX

at any poinix € B.
In Lemma 4.1 we rewrite the expansion of the square oftheseminorm ofy;.

8

R () = ()



Lemma 4.1 Considering the square of the'kseminorm ofy;, i.e.

i~ [ 53]

we have

21
W/IlHl(Q) f“:l(l) X FI(2)| 3 dx — f\] dX, (5)
B

where J= detVG. Hencey; exists if and only if

b
f|F(l) X F(2)| L < co.

The latter is an integral of a rational function.

Proof. The statement can be shown using elementary calculus. O

Note that the numeratdei(l) X Fi(2)|2 of the fraction is the determinant of the first fundamentaifof the param-
eterized surfac€; (B).

An approach similar to thel*-seminorm expansion can be applied to Hreseminorm of the functiow;. First
we define the tens® = (By);,_, via

B = F (FY x FP). (6)

Lemma 4.2 presents a representation oftiReseminorm integral.

Lemma 4.2 Considering the square of the’kseminorm ofy;, i.e.

Y
W’llHZ(Q) fz (3§n;,§m)

we have

Il/,'lHZ(Q) f HCOf (VG) 8 Cof (VG)T“F = X, (7)

where J= detVG and||-||r is the Frobenius norm.
Proof. The statement can be shown using elementary calculus. O

' (l)l\lote(zt)k']at the tensdB is a multiple of the second fundamental form of the surfac), with the scalar factor
Fo < K7

Having a representation of th¢!- andH2-seminorm as integrals of rational functions at hand, weckate regu-
larity results for instances of B-spline parameterizagiofVe cannot obtain regularity results for general pararzete
tions. Instead, we consider certain classes of singulanpaterizations and prove the boundedness or unboundedness
of the seminorm integrals.

We consider two special cases of B-spline patches. The éis& covers patches, where one edge in the parameter
domain degenerates to a single point in the physical dorii&ia@ second case examines parameterizations, where two
adjacent edges in the parameter domain have a common tatigeiion at the corner point in the physical domain.

e Case I: collapsing edge.Let Q be a B-spline patch of degrép:, p2). The representation consists mf.n,
tensor-product basis functions. Timelex set of degeneratidh C T fulfills

DZ{(il,iz)EH:i]_:O}

and the control points fulfilP; = O fori € D andP; # O fori € I\D. The parameterizatio® is singular for
Xo = (0,y)", with G (0,y) = O, and regular otherwise.

9
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(0,0) i

Figure 6: Index seb for Case | (collapsing edge) withy = p, = 4

0,1)
©.0) (.0) : 0,0
Figure 8: Index seb for Case Il (collinear edges) Figure 9: Control points for Case Il

e Case II: collinear edges. Similar to Case I, lef) be a B-spline patch of degrép, p2) consisting ofn;.n;
tensor-product basis functions. Timelex set of degeneratidhis defined as

D ={(0,0),(1,0),(0,1)}.

The control point®; are collinear foj € D. The parameterization is singular fqy = (O, 0)", withG (0,0) = O,
and regular elsewhere.

Remark 4.3 Note that any tensor-product B-spline surface can be splii Bézier patches. Therefore results for
basis functions on Bézier patches can be extended to moegagjelomains with B-spline representations.

An example of an index set for Case | is presented in Figurené.dbts represent double indigésiy) € I. The
dots inside the bold-lined rectangle represent théset

Figure 7 shows an example of a control point grid for a bitarBézier patch of degrge = (3, 3). The control
points that lie on a common thin continuous or dashed line laasommon; - or i,-index, respectively. This example
is a valid Case | situation. Figure 8 visualizes the indegsandD (bold continuous line) for a patch that belongs to
Case Il. Figure 9 shows a singular Bézier patch of degreg3, 3). It shows the control point grid of an example of
a Case Il situation.

We will now analyze both cases separately and state retyutasults for the test functions.

Theorem 4.4 LetG be a tensor-product B-spline parameterization of degree(p;, p2) of the domairf2. In Case |
we define

Dj_:{(il,iz)eﬂiil:O} and DZZ{(il,iz)GH:ilﬁl}.

10



In Case Il we havé®; = 0. For D, we consider two subcases. If the symmetry condition

9°G 3G
52 00=-7200 ®

is fulfilled, then we choose
Dy = {(ig,i2) € I1ig +i2 < 2}\{(1, 1)}.
Otherwise,
Dy ={(i1,i) €l:ig +ip < 2}.
The test functiong; fulfill y; ¢ H*(Q) if and only ifi € ;. Moreover, they satisfy; ¢ H? (Q) if and only ifi € .

Proof. For the proof we restrict ourselves to Bézier parametgoma. This is sfficient as we pointed out in Remark
4.3. We will split the proof of the two statements into threetp. First we develop an approximation of the integrand
in (5) or (7), respectively. This will be done using a Taylapansion of the numerator and denominator of the
integrands. Then we show the existence of the approximsgrials. Finally we conclude from that the existence of
the original integrals.

We start with Case | and analyze the integral

f (|F§1> < FOf - (detVG)Z) % dx
B

corresponding to thel-seminorm. In order to simplify the notation we will write= (i1, i) = (i, j) andx = (x,y)".
First we fixy and derive the Taylor expansions of

IF® x FO’ - (detvG)?

and deWVG with respect tax aroundxy = 0. The assumptions made in Case | imply that

G(xy) = i i Pi.iBi () Bj (¥)
i=1 j=0
whereB; (x) andB; (y) are the Bernstein polynomials. Usiwg; (x,y) = B; (x) Bj (y) we conclude
FO = (L) + 0. 12 () + 00, B () B; )
and
FO = (xf () + 0 () . xEs () + O (%), B (0 B, ) .
wherefy, f,, f3 andf; are some linearly independent functions. Hence
IFO x FOP - (detVG)? = (B (x) g 1))? + O (¥)
for some functiorg. One can show easily that there exist constants@ < C, such that
Ci1x < detVG (x,y) < Cox
forall (x,y)" € B. Hence there exist constants(C < C such that

c fB (Bi (X)g(y))z;l(dx < fB (|Fi(1)xFi(2)|2—(detVG)2)%dx < C fB (B (x)g(y))z%( dx.

11



Since
51
(Bi(¥)g(y)” - dx <o
B X
if and only ifi > 1 the first statement follows immediately. Now we considerHi3-seminorm integral

2 1
Fﬁdx.

f ||Cof (VG) B Cof (VG)'||

B

Using a similar approach as for th# integral we can show that
|Cof (VG) BCof (VG)T||. = xB (x) f (x.y)

wheref (x,y) is a function satisfyin@€; < f (x,y) < Cp, with constants 6< C; < C; for all x in a neighborhood of
Xo = 0. Hence there exist constants:@ < C such that

2

1 1 — , 1
ng (X B (X))? S < fB||COf (VG) BCof (VG)'||- F& < ch(x B (x))* — ox.
Considering Case |, the second statement of the theoreonfBince
, 1
. (Bi (X)) F dx < oo

if and only ifi > 2.
A similar strategy can be applied in Case Il. As described #] fhere exist constantsOC; < C, such that

Ci(x+y) <detVG (x,y) < Co(x+Y)
forall (x,y)" € B. Since all basis functions are bounded there exists a aur@taC such that
fB (|F§1> x FOP _ (detVG)Z) % & < C fB %/ dx
for all i. The integral of 1 (x + ) is bounded in any case. Now we analyze
fB |Cof (VG) B Cof (VG)T|[2 J_15 dx,
whereB depends on the indeé»as in (6). One can show that foe (i, j) with i + | > 3 there exists & > 0 such that
|Cof (VG) BCof (VG)T||. < C(x+y)*i™.
If the symmetry condition (8) is not fulfilled, then there stsi a constant & C such that
C (x+y)"™*I710 < ||Cof (VG) B Cof (VG)'||-

fori + j < 2. If condition (8) is fulfilled and(, ) # (1, 1) then this bound is still valid.
If we omit the case = j = 1 (under condition (8)) we conclude

1
C | ———dx<wl?
_fB (X+ y)4 |WI|H2(Q)

fori+ j<2and
Wy <C [ Oce 7 o
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fori+ j > 3. Since

f(x+y)k dx < oo
B

if and only if k > —1 the statement follows immediately.
The only remaining case is= j = 1 and condition (8) being valid. For this configuration thedo degree terms
cancel out and we get

|Cof (VG) BCof (VG)T||. < C(x+y)?

for someC > 0. Hence we get

2 = 1
|¢(l*l)|H2(Q) < CL X_+y dx < oo

which concludes the proof. O

Summing up, this theorem states that test functions caoreipg to control points that are close to the singularity
are not stficiently regular.

4.2. Modified test functions

It turns out that certain linear combinations of the testfions are sfficiently regular. We present such a modi-
fication scheme.

Theorem 4.5 Consider again the assumptions of Theorem 4.4, an&let Pil, Pi2 ! be the control points of the
parameterization. LeD, be the set defined in Theorem 4.4. The'Bgts the space of tensor-product test functions.
The function spac#/}, is defined as the span of

boo€) = Y. Ciui(®,
ieD,

U10(f) = Zlf’il/ Pmax i (€),
ieD,

bo1(€) = ) P¥/Praxyi(6), and
ieD,

Ji(€) = ¢i(G(9) forielDy,
where
Pk = P~ miyep, {P:(} and G=1- FA)ilAJr i
maXep, {ij} — MiNjep, {P]k} Prmax

With Prnax = maXep, {P! + P?}. Under these conditions we obtaiy, < Vi 1 H?(Q).
Proof. The proof of this theorem is a simple consequence of Theorénpsinilar to the proof of Theorem 3.4. OJ

The newly defined test functionlg o (£), Y01 (£) andioo (¢) can be seen as local reconstructions of the coordinate
functionscy (€) = &1, c2(€) = &2 andc(§) = 1 - & - &, respectively. Note that the reconstructed test functions
“Vh still maintain the desired properties like non-negatiahd the partition of unity. To demonstrate the presented
modification scheme we will discuss two examples. The firatgxe belongs to Case I.
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Figure 10: Control points for Example 4.6

AR

Figure 11: Test functiongs, v1.1, Yoo (3 plots on the left) and test functiows,o, ¥1.0, Yo (right plot) for Example 4.6
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Figure 12: Control points for Example 4.7

Example 4.6 We consider a Bézier patch of dege (3, 3) and control points as shown in Figure 10.

Four control points coincide and lie in the origin, causingiregularity. In this example we have test functions
i j(€) for0<i, j < 3. Theorem 4.4 states that the test functipngare not inH* () and that the test functionss ;
are inH (Q) but not inH? (Q). Nevertheless, Theorem 4.5 states that we can constraotaiive test functions to
replace the ones which are nofistiently regular. Figure 11 depicts examples of test fumatio

The three left figures show the functign,o which fulfills 3o € HY, the functionyy 1, with 11 € H! and
Y11 ¢ H?, and the functiomoo, with Yoo ¢ HL. The rightmost figure shows the test functigng, 10 andyos as
defined in Theorem 4.5. All functions ; are inH?.

In the next example we consider a parameterization fuldjitine Assumption of Case Il.

Example 4.7 We consider a Bézier patch of degee (3, 3) and control points as in Figure 12.

Similar to Example 4.6 Figure 13 shows examples of test fanst

Here we have thats 3 is in H2, y11 andyq are inH* but notinH2 and the functiong o, ¥1.0 andi 1 as defined
in 4.5 are inH2.

14



Figure 13: Test functiongs 3, 1.1, Yoo (3 plots on the left) and test functiows,o, ¥1.0, o2 (right plot) for Example 4.7

In both examples we get similar results that can be extenal@peheral B-spline parameterizations. Another
example of singular patches are fillet patches (see e.g).[28]that case the singularity is caused by a 0 degree
angle in contrast to the 180 degree angle of case Il. Thesbgmtan be used to represent sharp cusps with parallel
tangents. The results developed in this paper do not coigtyiie of singularity but the theory can be adapted to it.

5. Structurally equivalent parameterizations and sweepig

We introduce a framework to derive regularity results forengeneral parameterizations.

5.1. Structurally equivalent parameterizations

In higher dimensions it becomes very technical to provelegyresults for singular parameterizations. However,
its relatively easy to derive results if the general paramization isstructurally equivalento a reference parameteri-
zation where regularity results are available. The follaywiefinition is used to describe such an equivalence.

Definition 5.1 Two parameterizationé andG are said to bestructurally equivalendf order k ifG o G1 e Ckand
G o G™! € CKwhere all derivatives are bounded.

It is possible to derive conditions on the control points amdghts of a B-spline parameterization which imply
this property.

Note that this notion of structural equivalence iffelient from the notion used in [14]. First, it also considers
higher — and not only first — derivatives. Second, the devigathave to be bounded, while the notion in [14] requires
the eigenvalues of the Jacobian to be bounded.

The following result is an immediate consequence of thisdedn.

Proposition 5.2 If two parameterizationé (with test functions); on f)) and G (with test functiong; on Q) with
common basis functiong on Qo and common index sétare structurally equivalent of order k, then € HK(Q) if
and only if; € H*(Q).

We will omit the (simple) proof of this proposition. In thextesection we will use the definition of structurally
equivalent parameterizations and Proposition 5.2 to pregelarity results for several examples.

5.2. Swept parameterizations

In this chapter we will present special 3-dimensional darsaihich are derived from lower dimensional domains.
Let GBI be the parameterization of the 3-dimensional donglf having basis fUnCtiOnéﬁ(i,j) (X, Y) pk (z))
control pointgP;);; and the index set

(i, jKel’

I={i=(,jkez®:0<i<(m,n,ng) -1},

The two-dimensional domaif? has the parameterizatid®? with basis functions{qﬁj (%, y)) , control points

jel
(Qj)jej and the index set

J={i=@.i)ez?:0<j<(mn)-1}.
15



Figure 14: Quarter of a torus and control point grid

Now we can state the following theorem for swept volume patanizations (similar to a result in [14]).

Lemma 5.3 Let Q%! be a volume constructed from the two-dimensional dor¥dh i.e. fori € I the control point
P; fulfills

.
PG.iv = Qb Q. PK) ©)

Wik = B(.j)Pk © (G[gl)_l e H' (@)

if and only if the bivariate test functiag; j) fulfills

Wi = o (GB) e HE ().

This theorem states existence results for prismatic ondyital domains. It can now be used to cover more
general domains using Proposition 5.2.

Example 5.4 Figure 14 shows the quarter of a torus. The parameterizafitime torus is structurally equivalent to
the cylindrical parameterization shown in Figure 14 of [14]

For this example all test functions on the torus arélin In Figure 14 we present a control point grid and mark
especially those control points corresponding to testtfans that are not id? (black dots). In this picture not the
entire control grid is plotted, but only parts thereof.

The total number of control points for this example isXQ0 x 3, hence the dimension of the function space
YV is 300. Each quintuple of test functions, correspondindnéodontrol points depicted in Figure 14, is notHR.
According to our modification scheme one can recovelrfi3cently regular test functions out of each quintuple. Since
there are 12 such groups of control points we losex B2degrees of freedom but regain 23 via the modification
scheme. Hence the modified function spagehas 276 degrees of freedom.

The considered class of three dimensional domains thawisred by the presented theory is by far too small to
cover all interesting cases. Itis of particular interestéoelop a similar theory for more general spatial domairtls wi
singular parameterizations, like cones or volumes with a®mboundary (e.g. a sphere).
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6. Conclusions

In this paper we considered the isogeometric method to gudvgal diferential equations on 1-, 2- and 3-
dimensional domains. We specifically analyzed situatiohsr& the parameterization of the domain contains sin-
gularities. Such degeneracies can be caused by collapsitigotpoints or by control points that are collinear at the
boundary, and they are highly useful for compactly représgrechnically interesting geometries.

First we treated the 1-dimensional case where we assumeithéhfrsta control points collapse. In that case we
could show that the firgir/2] + 1 test functions are not iH* and that the first(1 + 3e) /2] + 1 test functions are not
in H2. This behavior is remarkable since not only those test fanstcorresponding to degenerating control points
are dfected but also neighboring ones. Similar results can be slion2-dimensional domains, where we treated
two special cases separately.

Further, we presented a modification scheme for all casesg@in the needed regularity properties. We could
show that specific linear combinations of test functionssafciently regular. The presented schemes lead to conve-
nient discrete function spaces which seem fruitful for fatanalysis, e.g. approximation properties.

The presented results can be extended to parameterizaitbrseveral singular points, provided that the singular-
ities occur at the vertices of the polynomial or rationalreegts. More general situations, like singularities apipear
in the interior of patches, are not yet covered. This remaimsbjective for future research.

Some of the main targets for further analysis are approxamgiroperties on singular domains and quantitative
results concerning the fitness matrix of a variational problem. The extension to higlmaensions is also of interest,
since we only considered swept parameterizations so far.

Appendix. Proof of Lemma 2.2

During the proof we will omit the indek in order to improve the readability. The chain rule apptied

¥ (G (X)) = ¢(x)

leads to

Zéw 0Gn o P _ N PY 9GndGy ia_w &G
4 0ém 0% OXj0x L 0&ndém 0% 0 £ Oém OX0%

We have CoA = 1 for a scalaA and

All A12 A22 _AZl
Cof A1t 742 | o T2 e
( Acr Az ) ( -Az A )

fora2x2 matrix(Ai,j)izj:l. Since

AT = —_CofA
de tACO
we conclude
d
/. ¢ 1
0& ;kaaxk J
Hence
Z G 62¢ 0Gm Gy,
6x,6x. axk ax ax. o 0¢nOém OXi OXj
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which leads to

2y 1 9% d 8y &G
== N CinCinl —2-3- Y C
0éndEm I I; R P |<|Z=1 " % O%[0%

Finally we arrive at

d 2
Nmn
2 (?) Jax,

mn=1

d 62170 2
2 _ —
Wy = Lél(afnafm) « - |,

which concludes the proof. O
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