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Abstract

Isogeometric Analysis (IGA) was introduced by Hughes et al. in 2005 [1] as a new method

to bridge the gap between the geometry description and numerical analysis. Similar to the

finite element approach, the IGA concept to solve a partial differential equation leads to

a (linear) system of equations. The condition number of the coefficient matrix is a crucial

factor for the stability of the system. It depends strongly on the domain parameterization,

which provides the isogeometric discretization. In this paper we derive a bound for the

condition number of the stiffness matrix of the Poisson equation. In particular, we investi-

gate the influence of the domain parameterization and the knot spacing on the stability of

the numerical system. The factors appearing in our bound reflect the stability properties

of a given domain parameterization.

Keywords: numerical stability, Isogeometric Analysis, domain parameterization, knot

spacing, condition number, quality measure

1. Introduction

The concept of Isogeometric Analysis (IGA) was first proposed by Hughes et al. [1] in 2005

to provide a seamless integration of Computer-Aided Design (CAD) and Finite Element

Analysis (FEA). In IGA, the same basis functions are used for the geometry description and

for the numerical analysis. One major advantage of IGA over the classical finite element

method (FEM) is the improved representation of the computational domain by using non-

uniform rational B-splines (NURBS) or other classes of basis functions. Furthermore, due
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to the increased smoothness of the basis functions, the numerical solution inherits a high

continuity.

Since the first publication of Hughes and his co-workers on IGA, an increasing number

of researchers worldwide are working in that field, applying the new methodology to a

wide variety of simulation problems. Within the last 8 years, 184 papers with the word

“isogeometric” in the title have been published alone in the journal Computer Methods in

Applied Mechanics and Engineering. The number of publications per year is increasing,

which shows that IGA is a very active field of research.

Besides practical issues, also the theoretical foundations of IGA have been analyzed

thoroughly. Here we mention a few representative results: Fundamental results on ap-

proximation properties, error estimates and numerical stability in IGA are described in

[2–4]. Among other issues, these publications derive error estimates for approximation by

NURBS functions with respect to degree, smoothness and stepsize (knot spacing). Another

important issue is the derivation and analysis of efficient quadrature rules for IGA, see [5].

Especially when dealing with large problems, the computational effort for solving the

numerical system becomes an important issue. It is then preferable to use iterative solvers

instead of direct solvers to reduce the computational costs. When using an iterative solver,

the condition number is a crucial factor, since it highly influences the rate of convergence.

Furthermore, small changes in the right-hand side of a linear system could cause big changes

in the solution, if the system matrix is not well conditioned.

In the classical FEM literature one can find considerations about the stiffness matrix

and bounds for the condition number, being of order O(h−2) for uniform discretizations

with grid size h, see, e.g., [6–8]. This also generalizes to locally refined meshes under mild

restrictions on the refinement, see, e.g., [9]. There are also recent publications giving finer

bounds for p−FEM, see, e.g., [10]. Moreover, it has been analyzed how the quality of the

underlying mesh influences the numerical properties of the stiffness matrix, see, e.g., [11]

and the references cited therein.

Many results from classical FEM can be carried over to the isogeometric approach.

However, when we want to compute bounds for the condition number of the stiffness

matrix, some differences occur due to the presence of the geometry mapping and the larger

support of the basis functions.

The condition number in IGA depends on the underlying parameterization of the com-

putational domain. Hence, this number can be used to measure the quality of a param-
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eterization. Our goal is to analyze the influence of the parameterization of the domain

of interest on the stability of the numerical system. More precisely, our aim is to de-

rive an upper bound for the condition number, which reflects the quality of the domain

parameterization.

Construction of domain parameterizations that are suitable for IGA have been pre-

sented in several publications. In [12] we provided a tool to construct B-spline or NURBS

swept volumes via a variational framework. This class of volumes is suitable to param-

eterize functional free-form shapes such as blades for turbines and propellers. Moreover,

we discussed the influence of the chosen parameterization on the accuracy of the solution.

However, we had no simple measure for the quality of a parameterization.

Cohen et al. [13] introduce the framework of analysis-aware modeling, where model

properties and parameters should be selected to facilitate isogeometric analysis. Martin et

al. [14] provide a method to construct volumetric B-spline parameterizations from input

genus-0 triangle meshes using harmonic functions.

In [15–17] the authors show that the parameterization of the computational domain has

an impact on the simulation result and the efficiency of the computations. An optimal pa-

rameterization of the computational domain is generated by a shape optimization method.

Additionally, an easy-to-check algorithm to ensure that the constructed parameterization

has no self-intersections is proposed.

The articles [18, 19] analyze the influence of singularities in the parameterization of

the physical domain. The authors present regularity results and modification schemes

for the test function space in the case of reduced regularity. In [20] a method for shape

optimization using the Winslow functional is introduced. In [21] and [22] the authors use

this technique to optimize the domain of interest for special applications such as vibrating

membranes or conducting scatterers.

In [23–26] the authors discuss various methods for shape optimization of different do-

mains. Lipton et al. [27] discovered the effect of severe distortion of the control and physical

mesh. In all cases, using higher order basis functions leads to increased robustness under

mesh distortion.

In many of these earlier studies, a parameterization was considered to be “good” in the

sense that it is analysis-suitable, whenever the physical mesh looks “nice”. The ratio of

maximum to minimum physical element size should not exceed prescribed limits and the

physical elements should not be too much distorted. However, this was a rather heuristic
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way to define a “good” parameterization. As far as we know, there are no publications

considering the influence of the parameterization on the stability of the numerical system.

Recently, Gahalaut and Tomar [28] derived estimates for the condition number of the

stiffness and mass matrix for IGA for h− and p−refinement. Their estimates depend on

the polynomial degree of basis functions p and the mesh size h and some constant. The

dependence on the geometry mapping G, however, is hidden in the constant.

In contrast to this approach, in our paper we derive bounds for the condition number of

the stiffness matrix which make explicit the influence of the domain parameterization. The

investigated bounds depend on the knot vector and on a term arising from the geometry

mapping. Special attention will be paid to the latter term, since this provides a quality

measure for the parameterization.

The remainder of this paper is organized as follows: In Section 2 we recall the principles

of IGA and introduce our notation. Section 3 describes the outline and the basic steps of our

approach to find a bound for the condition number of the stiffness matrix. In the following

three sections we will derive bounds for the one-, two- and three–dimensional case. We will

present several examples and compare different parameterizations in Section 7. Finally we

will conclude the paper in Section 8.

2. Preliminaries

We recall the principles of IGA and formulate the model problem. Furthermore, we recall

some elementary results about quadratic forms and matrix inequalities.

2.1. IGA on a single patch

Consider the unit cube Ω0 = [0, 1]D in R
D, where D ∈ {1, 2, 3} is the dimension. The cube

Ω0 is called the parameter domain. We denote by {βd
i }i=1,...,nd

the univariate B-splines of

degree pd for the d-th parameter direction, which are defined by a knot vector

[0, . . . , 0, . . . , kℓdd , k
ℓd+1
d , . . . , 1, . . . , 1],

where d = 1, . . . , D. We will use open knot vectors, i.e., with (pd+1)-fold boundary knots.

The symbol nd denotes the total number of B-splines in the d-th parameter direction. The

length of a knot span [kℓdd , k
ℓd+1
d ] is

hℓdd = kℓd+1
d − kℓdd . (1)
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Throughout this paper we will use the following convention for indices: The lower index

refers to the space coordinate, while the upper index identifies the knot span, which will

also be called an element. Note that we will use multi-indices for the latter. In particular,

in the case D = 1 we will omit the lower index by simply writing hℓ for the length of the

knot span [kℓ, kℓ+1].

We introduce the multi-index i = (i1, . . . , iD) and the index set

I = {i ∈ N
D : 0 ≤ i1 ≤ n1, . . . , 0 ≤ iD ≤ nD}.

The (multivariate) rational (or NURBS) basis functions ψi are defined by

ψi(ξ) = ψi(ξ1, . . . , ξD) =
wi · β

1
i1
(ξ1) · . . . · β

D
iD
(ξD)

∑

i′∈I
wi′ · β1

i′
1

(ξ1) · . . . · βD
i′
D

(ξD)

with certain positive weights wi > 0. The basis functions ψi will be referred to as geometry

basis functions. These basis functions form a convex partition of unity.

Summing up, the rational basis functions are defined by specifying the dimension D

of the parameter domain, the D knot vectors and degrees, and a positive weight for each

function. We refer to [29–32] for more detailed information on properties and algorithms

for B-splines and NURBS.

Throughout this paper we assume that the following two assumptions are satisfied:

Assumption 1 The knot vectors in all parameter directions d = 1, . . . , D are locally

quasi-uniform, i.e., there exists a constant K such that the lengths of the knot spans

satisfy
hjdd
hℓdd

≤ K, jd = ℓd − pd, . . . , ℓd + pd

for all indices ℓd with hℓdd 6= 0.

Consequently, for a given non-empty knot span, the lengths of all those knot spans

which belong to the support of B-splines whose support includes the given knot span, is

bounded from above by a certain constant multiple of the length of the given span.

The local quasi-uniformity of the knot vectors is a condition on the refinement algo-

rithm. The knot vectors should be refined in a way that this condition is fulfilled for some

constant K. The constant K will be used later in the derivation of the estimates for the

condition number.
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Assumption 2 The weights are bounded, i.e., there exists a constant W ≥ 1 such that

1

W
≤ wi ≤ W

holds for all indices i ∈ I.

The boundedness of the weights is always preserved when refining a given parameteri-

zation, due to the convex hull property of B-spline representations.

In addition to the parameter domain, we consider the physical domain Ω ⊂ R
D with

boundary ∂Ω. We assume that it is connected to the parameter domain via the geometry

mapping

G : Ω0 → Ω, ξ 7→ x = G(ξ),

which maps the parameter domain Ω0 to the physical domain Ω, see Fig. 1. The geometry

mapping is a linear combination of the rational basis functions,

G =
∑

i

diψi,

where di ∈ R
D are the control points. The mapping G is assumed to be bijective.

0 1

1 G

ψ φ

R

ξ ∈ Ω0 x(ξ) ∈ Ω

Figure 1: The parameter domain Ω0, the physical domain Ω, the geometry mapping G connecting the two

domains, the geometry basis functions ψ and the isogeometric test functions φ.

IGA is a method for computing an approximate solution of a partial differential equation

(PDE) on the domain Ω. The unknown solution u of the PDE is approximated by a function

uh(x) =
∑

i

ciφi(x),
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which is a linear combination of isogeometric test functions φi(x) = (ψi ◦ G−1)(x), see

Fig. 1, with certain coefficients ci ∈ R.

A major advantage of using B-splines or NURBS for the geometry parameterization

is the reduction or even elimination of errors resulting from the geometry representation.

Furthermore, the increased smoothness of the basis functions with compact support leads

to superior approximation properties. Further details of the isogeometric concept are

described in [1, 33].

2.2. Quadratic forms and matrix inequalities

In the following we consider symmetric m × m matrices with real entries. Consider two

matrices A and B. We write

A ≤ B if ∀ x ∈ R
m : xTAx ≤ xTBx (2)

and

A ≥ B if ∀ x ∈ R
m : xTAx ≥ xTBx. (3)

Given a matrix A, the Rayleigh quotient RA(x) is defined as

RA(x) =
xTAx

xTx

with x ∈ R
m,x 6= ~0. It satisfies

λmin(A) ≤ RA(x) ≤ λmax(A),

where λmin(A) and λmax(A) denote the minimum and the maximum eigenvalue of the

matrix A. Consider 4 matrices A,A′,B,B′ and the identity matrix I. We recall the

following simple results:

(i) λmin(A)I ≤ A ≤ λmax(A)I.

(ii) A ≤ B ⇒ λmin(A) ≤ λmin(B) and λmax(A) ≤ λmax(B).

(iii) (A ≤ A′) ∧ (B ≤ B′) ⇒ A+B ≤ A′ +B′.

(iv) λmax(A+B) ≤ λmax(A) + λmax(B).

Definition 3 A set A of m×m matrices A is said to be bounded, if there exists a constant

C such that all elements of all matrices A = (ai,j)i,j ∈ A satisfy |ai,j| ≤ C. Thus, the set

A corresponds to a bounded subset of Rm2

.
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For later reference we formulate an auxiliary result:

Lemma 4 Consider a bounded set A of symmetric m × m matrices. There exist real

constants λ and λ, depending on the chosen set A, such that every matrix A ∈ A satisfies

λI ≤ A ≤ λI,

where I is the m × m identity matrix and the inequalities are considered in the sense of

Eq. (2). If the set A is a bounded and closed set of symmetric and positive definite matrices,

then constants λ and λ with 0 < λ < λ exist.

Proof. Any matrix A ∈ A can be bounded by

λmin(A)I ≤ A ≤ λmax(A)I.

Since the set A is bounded, we can obtain global bounds which have to satisfy

λ ≤ inf
A∈A

λmin(A) and λ ≥ sup
A∈A

λmax(A).

If the set A is a bounded and closed set of symmetric and positive definite m×m matrices,

all eigenvalues of the matrices A in the set are strictly positive, hence the lower bound λ

and the upper bound λ are strictly positive.

We discuss a simple example of a bounded and closed set A of symmetric and positive

definite matrices: We consider quadratic univariate B-splines defined on a sequence of

knots [. . . , k0,−1, 1, k1, . . .], where k0 ≤ −1 and k1 ≥ 1. On the knot span [−1, 1], exactly

three basis functions do not vanish. For this element we consider the element mass matrix

Mℓ for the identical geometry mapping, which possesses the entries

mℓ
i,j =

∫ 1

−1

ψiψjdξ,

see also Eq. (15) in Section 4.1. The element mass matrix Mℓ is a symmetric and positive

definite 3× 3 matrix, where each entry depends on the coefficients k0 and k1. Exemplarily

we present the expressions for some of the entries:

mℓ
1,1 =

8

5(k0 − 1)2

mℓ
1,2 = −

4(2 + 4k0 + k1 + 5k0k1)

15(k0 − 1)2(k1 + 1)

mℓ
1,3 = −

4

15(k0 − 1)(k1 + 1)
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If the knots k0 and k1 vary in a bounded interval, then the collection of matrices Mℓ

satisfy the assumptions of the second part of Lemma 4. Since the element mass matrices

are symmetric and positive definite, we can find positive values λ and λ, such that λI ≤

Mℓ ≤ λI holds for all matrices Mℓ ∈ A. For instance, if we restrict the knots ki to

k0 ∈ [−5,−1], k1 ∈ [1, 5] we obtain λ = 0.00391081 and λ = 1.26276.

This observation admits the following geometric interpretation: For a fixed pair of

values (k0, k1), the equation xTMℓx = 1 describes an ellipsoid. The equation xT (λI)x = 1

describes the smallest sphere, that is circumscribed about all ellipsoids in the set A. The

equation xT (λI)x = 1 describes the largest sphere, that is inscribed in all ellipsoids in the

set. Fig. 2 shows some of the ellipsoids and the smallest circumscribed and the largest

inscribed sphere for the previously defined ranges of k0 and k1.

Figure 2: Geometric interpretation of the bounded set of matrices. The symmetric and positive definite

3× 3 matrices Mℓ correspond to ellipsoids, the matrices λI and λI correspond to the minimum subscribed

and the maximum inscribed sphere, respectively.

For future reference we recall

Theorem 5 (Cauchy’s interlace theorem [34]). Let A be a symmetric n×n matrix and B

be a symmetric m ×m sub-matrix constructed from A by deleting columns and rows with

m ≤ n. Let the eigenvalues of A and B be α1 ≤ α2 ≤ . . . ≤ αn and β1 ≤ β2 ≤ . . . ≤ βm,

respectively. These eigenvalues satisfy

αk ≤ βk ≤ αk+n−m, k = 1, . . . , m.

This Theorem implies

λmin(B) ≥ λmin(A) and λmax(B) ≤ λmax(A). (4)
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2.3. Model problem, weak formulation, stiffness matrix

We consider the Poisson equation for the unknown function u with homogeneous Dirichlet

boundary conditions over the physical domain Ω ⊂ R
D, D ∈ {1, 2, 3},

{

−∆u(x) = f(x) on Ω

u(x) = 0 on ∂Ω

with x = (x1, . . . , xD), f ∈ L2(Ω). Applying Galerkin projection to the associated weak

formulation leads to the problem to find the approximate solution

uh(x) =
∑

i

ciφi(x)

which satisfies

∀ vh ∈ V0h :

∫

Ω

∇uTh (x)∇vh(x)dx

︸ ︷︷ ︸

= a(uh, vh)

=

∫

Ω

f(x)vh(x)dx

︸ ︷︷ ︸

= (f, vh)

,

where the test functions form the space

V0h = {vh ∈ span{φi : i ∈ I0}} with I0 = {i ∈ I : φi = 0 on ∂Ω}.

By choosing a basis {φi : i ∈ I0} of isogeometric test functions for V0h we can then derive

a linear system of equations

Sc = f

for the unknowns c = (ci)i∈I0, where S = (a(φi, φj))i,j∈I0 is the stiffness matrix and

f = ((f, φi))i∈I0 is often called the load vector.

The entries of the stiffness matrix S are given by integrals over products of gradients

of basis functions,

si,j = a(φi, φj) =

∫

Ω

∇φT
i (x)∇φj(x) dx.

Using the Jacobian J of the geometry mapping G and its determinant

ω(ξ) = |detJ(ξ)|, (5)

the integral over the physical domain Ω can be transformed into an integral over the

parameter domain Ω0, since φ = ψ ◦G−1. We obtain

si,j =

∫

Ω0

∇ψT
i (ξ) N(ξ) ∇ψj(ξ) dξ with N(ξ) = ω(ξ)J−1(ξ)J−T (ξ). (6)
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The matrix N is a symmetric and positive definite D × D matrix. In particular, for

dimension D = 1, we obtain

N(ξ) =
1

|Ġ(ξ)|
,

where the dot denotes the derivative with respect to ξ. The stiffness matrix S is symmetric

and positive definite. Due to the local support of the basis functions, the stiffness matrix

is sparse.

Assumption 6 Throughout this paper we will consider only regular parameterizations of

the physical domain, i.e., we assume ω(ξ) 6= 0, see Eq. (5).

2.4. Element-wise construction the stiffness matrix

For any realistic problem size, the global stiffness matrix is assembled from element stiff-

ness matrices. Analogous to classical FEM, the element stiffness matrices are given by

integrating over an element. In IGA an element is defined as the knot span between two

adjacent knot values in the one-dimensional case and as the Cartesian product of knot

spans in higher dimensions. Using the multi-index ℓ = (ℓ1, . . . , ℓD), we will denote the

elements by Eℓ,

Eℓ =
D

×
d=1

[kℓdd , k
ℓd+1
d ].

Note that some of these elements may be empty, as some of the knots may coincide. During

the analysis we consider the non-empty elements only.

The element stiffness matrix S̃ℓ for the element Eℓ contains the entries

s̃ℓi,j =

∫

Eℓ

∇ψT
i (ξ) N(ξ) ∇ψj(ξ) dξ.

Many entries of the element stiffness matrices vanish due to the local support of the basis

functions. Therefore we define reduced element stiffness matrices Sℓ, where we store only

the relevant entries, i.e., we restrict the index set to the indices of the functions whose

support contains the element. We obtain the full element stiffness matrix S̃ℓ from the

reduced ones by multiplication with element contribution matrices (Pℓ)T and Pℓ,

S̃ℓ = (Pℓ)TSℓ(Pℓ).

The element contribution matrices Pℓ can be easily constructed by considering the diagonal

entries of the element stiffness matrices. If the diagonal entry in position (i, i) of the reduced
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element stiffness matrix Sℓ is in position (j, j) in the full element stiffness matrix S̃ℓ, we

will have the entry 1 in position (i, j) in the element contribution matrix Pℓ. All other

entries of Pℓ are 0.

The global stiffness matrix Sglob is obtained by summing the full element stiffness ma-

trices,

Sglob =
∑

ℓ

S̃ℓ.

Finally, the homogeneous Dirichlet boundary conditions are incorporated by deleting the

corresponding columns and rows of the global stiffness matrix Sglob. The stiffness matrix

with incorporated Dirichlet boundary conditions will be denoted as S.

The reduced element stiffness matrices Sℓ are symmetric and positive semi-definite. The

global stiffness matrix S with incorporated Dirichlet boundary conditions is symmetric and

positive definite. Table 1 shows the dimensions of the matrices introduced so far.

matrix description rows columns

Sglob global stiffness matrix
D∏

d=1

nd

D∏

d=1

nd

S
global stiffness matrix with incorpo-

rated Dirichlet boundary conditions

D∏

d=1

(nd − 2)
D∏

d=1

(nd − 2)

S̃
ℓ full element stiffness matrix

D∏

d=1

nd

D∏

d=1

nd

S
ℓ reduced element stiffness matrix

D∏

d=1

(pd + 1)
D∏

d=1

(pd + 1)

P
ℓ element contribution matrix

D∏

d=1

(pd + 1)
D∏

d=1

nd

Table 1: Dimensions of the matrices used to construct the global stiffness matrix.

Remark 7 Note that in practice the assembling of the global stiffness matrix is a little

different. One starts with computing the reduced element stiffness matrices. With a

connectivity matrix of size nd×
D∏

d=1

(pd+1), which holds the global numbering, one assembles

the global system matrix. This approach is less memory consuming than our proposed

approach by computing full and reduced element matrices and connecting them via element

contribution matrices. However, our approach leads to a very simple and hence appealing

relation between the involved matrices which may be preferable for the theoretical analysis.

Remark 8 In the sequel we will need only the reduced element stiffness matrices. For the

sake of brevity we will omit the word “reduced” and call these matrices simply element
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stiffness matrices.

2.5. Element-wise bounds of geometry-related terms

In the one-dimensional case (D = 1), we abbreviate the maximum and the minimum of

the function ω = |Ġ| on the element Eℓ by ωℓ
max and ωℓ

min respectively, i.e.,

ωℓ
max = max

ξ∈Eℓ
|Ġ(ξ)| and ωℓ

min = min
ξ∈Eℓ

|Ġ(ξ)|. (7)

In higher dimensions (D > 1), we need the element-wise maximum of the absolute value

of each entry of the matrix N,

N ℓ
i,j,max = max

ξ∈Eℓ

|Ni,j(ξ)|

and we assemble these in another matrix

Nℓ
max = (N ℓ

i,j,max)i,j=1,...,D.

In addition, we generalize the one-dimensional notation (7) to

ωℓ
max = max

ξ∈Eℓ

ω(ξ) and ωℓ
min = min

ξ∈Eℓ

ω(ξ). (8)

Assumption 9 We assume that for every element there exists a positive constant δℓ such

that the determinant of the Jacobian satisfies

∀ ξ ∈ Eℓ : ω(ξ) ≥ δℓ ωℓ
max.

The constants δℓ are given by

δℓ =
ωℓ
min

ωℓ
max

.

In the case D = 1, this inequality can be rewritten as

∀ ξ ∈ Eℓ : |Ġ(ξ)| ≥ δℓ ωℓ
max,

with the constant δℓ =
ωℓ
min

ωℓ
max

.

Note that uniform refinement of a given isogeometric discretization implies that all δℓ tend

to 1.
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3. Analysis of the condition number

This section derives a bound of the condition number in terms of matrices which are

defined on the elements of the isogeometric discretization. First we provide an outline of

the approach. We consider the maximum and the minimum eigenvalues separately, where

the analysis of the latter one requires us to introduce the concept of mass matrices. Finally

we formulate the bound for the condition number.

3.1. Outline of our approach

Since the global stiffness matrix with incorporated Dirichlet boundary conditions is sym-

metric and positive definite, the condition number κ(S) is given by

κ(S) =
λmax(S)

λmin(S)
.

In order to derive an upper bound for the condition number κ, we need to bound the

maximum eigenvalue from above and the minimum eigenvalue from below. The estimates

are derived in several steps, which follow the classical approach to derive these bounds for

the finite element method. Fig. 3 summarizes the estimates used to construct a bound for

the condition number.

First, the maximum eigenvalue of the global stiffness matrix is bounded by the max-

imum of the maximum eigenvalues of the element stiffness matrices. For each element

stiffness matrix, its maximum eigenvalue is bounded by a term depending on the geometry

mapping and another term depending on the knot vector.

On the other hand, the minimum eigenvalue of the global stiffness matrix is bounded

by the minimum eigenvalue of the global mass matrix, using the Friedrichs inequality.

Next, the procedure is the same as for the stiffness matrix. The minimum eigenvalue of

the global mass matrix is bounded by the minimum of the minimum eigenvalues of the

element mass matrices. For each element mass matrix, its minimum eigenvalue is bounded

by a term depending on the geometry mapping and another term which depends on the

knot vector. The bound for the minimum eigenvalue is bounded away from 0. The details

of the estimates are presented in the following sections.

3.2. Bounding the maximum eigenvalue

We start by considering the maximum eigenvalue of the stiffness matrix.
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κ(S) = λmax(S)
λmin(S)

Bound global stiffness matrix

by element stiffness matrices

λmax(S) ≤
D∏

d=1

(pd + 1)max
ℓ

λmax(S
ℓ)

λmax(S
ℓ) ≤







1
hℓωℓ

min

λ in 1D

λmax(N
ℓ
max)H

ℓ
2 λ in 2D

λmax(N
ℓ
max)H

ℓ
3 λ in 3D

Friedrichs inequality

λmin(S) ≥
(

1
diam(Ω)

)2

λmin(M)

Bound global mass matrix

by element mass matrices

λmin(M) ≥ min
ℓ

λmin(M
ℓ)

λmin(M
ℓ) ≥







hℓωℓ
min λ in 1D

hℓ11 h
ℓ2
2 ω

ℓ

min λ in 2D

hℓ11 h
ℓ2
2 h

ℓ3
3 ω

ℓ

min λ in 3D

Figure 3: Illustration of the estimates used to construct a bound for the condition number of the stiffness

matrix. The expressions for the variables Hℓ
2 and Hℓ

3 are defined in Eq. (23) for dimension D = 2 and in

Eq. (30) for dimension D = 3.

Lemma 10 The maximum eigenvalues of the element stiffness matrices provide an upper

bound of the maximum eigenvalue of the global stiffness matrix,

λmax(S) ≤

(
D∏

d=1

(pd + 1)

)

max
ℓ
λmax(S

ℓ). (9)

Proof. Since the element stiffness matrices Sℓ are symmetric and positive semi-definite, we

can bound the matrices from above by

Sℓ ≤ λmax(S
ℓ)I.

The global stiffness matrix Sglob without incorporated Dirichlet boundary conditions is

assembled from the element stiffness matrices by

Sglob =
∑

ℓ

(Pℓ)TSℓPℓ.

Inserting the matrix bound for Sℓ, we obtain

Sglob ≤
∑

ℓ

(Pℓ)Tλmax(S
ℓ)I Pℓ,

15



where the identity matrix I in this equation has the same dimensions as the element stiffness

matrix. The maximum number of terms of the form λmax(S
ℓ) in the diagonal of this matrix

is
D∏

d=1

(pd + 1),

where pd is the degree of the B-spline/NURBS basis functions in the d-th parameter di-

rection. This implies

Sglob ≤

(
D∏

d=1

(pd + 1)

)

max
ℓ
λmax(S

ℓ)I,

where the identity matrix I in this equation has the same dimensions as the global stiffness

matrix Sglob. From this it follows

λmax(Sglob) ≤ λmax

((
D∏

d=1

(pd + 1)

)

max
ℓ
λmax(S

ℓ)I

)

=

(
D∏

d=1

(pd + 1)

)

max
ℓ
λmax(S

ℓ).

The global stiffness matrix S with incorporated Dirichlet boundary conditions is con-

structed by deleting columns and rows of Sglob. Hence we know by Cauchy’s interlace

theorem and Eq. (4) that

λmax(S) ≤ λmax(Sglob),

which concludes the proof.

3.3. The Friedrichs inequality and the mass matrix

The element stiffness matrices are singular. Thus we cannot use the element stiffness

matrices to bound the minimum eigenvalue of the global stiffness matrix. Similar to the

approach in the classical FEM literature we address this problem by using the Friedrichs

inequality:

Lemma 11 (Friedrichs inequality [35]) Consider a bounded subset Ω of RD with diameter

diam(Ω) and an element u of the Sobolev space W k,q
0 (Ω). Then the following inequality

holds:

‖u‖Lq(Ω) ≤ (diam(Ω))k




∑

|α|=k

‖Dαu‖qLq(Ω)





1

q

.

In particular, for q = 2 and k = 1 we obtain

‖u‖L2(Ω) ≤ diam(Ω)‖∇u‖L2(Ω).
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For further investigation we need to define the mass matrix M. The entries mi,j of the

mass matrix M are given by integrals over products of basis functions, i.e.,

mi,j =

∫

Ω

φi(x)φj(x)dx.

Similar to the stiffness matrix, the entries of the mass matrix can be transformed to

integrals over the parameter domain Ω0 by
∫

Ω

φi(x)φj(x)dx =

∫

Ω0

ψi(ξ)ψj(ξ)ω(ξ) dξ.

All entries of the mass matrix are non-negative, since the basis functions are non-negative

everywhere. The mass matrix is symmetric and positive definite. The global mass matrix

can be constructed by summing up element mass matrices,

Mglob =
∑

ℓ

M̃ℓ (10)

with

M̃ℓ = (m̃ℓ
i,j)i,j and m̃ℓ

i,j =

∫

Eℓ

ψi(ξ)ψj(ξ)ω(ξ) dξ.

By deleting certain columns and rows of Mglob to incorporate the homogeneous Dirichlet

boundary conditions we obtain the matrix M.

Similar to the construction of the stiffness matrix we define reduced element mass ma-

trices Mℓ that just contain the relevant entries,

M̃ℓ = (Pℓ)TMℓPℓ. (11)

The reduced element mass matrices are symmetric and positive definite. Again we will

omit the term “reduced” and call these matrices just element mass matrices.

Corollary 12 The smallest eigenvalue of the stiffness matrix is bounded from below by the

smallest eigenvalue of the mass matrix,

λmin(S) ≥
1

(diam(Ω))2
λmin(M). (12)

Proof. Using the Friedrichs inequality, we obtain

cTSc = ‖∇uh‖
2 ≥

1

(diam(Ω))2
‖uh‖

2 =
1

(diam(Ω))2
cTMc.

The minimum eigenvalues of the matrices S and M are the minima of the corresponding

Rayleigh quotients. This implies (12).
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3.4. Bounding the minimum eigenvalue

We consider the contribution of each element to the mass matrix:

Lemma 13 The minimum eigenvalue of the global mass matrix can be bounded by the

minimum eigenvalue of the element mass matrices,

λmin(M) ≥ min
ℓ
λmin(M

ℓ), (13)

where the minimum is taken over all non-empty elements.

Proof. Since the element mass matrices Mℓ are symmetric and positive definite, we can

bound the matrices from below by

Mℓ ≥ λmin(M
ℓ)I

which implies

(Pℓ)TMℓPℓ ≥ (Pℓ)Tλmin(M
ℓ)I Pℓ.

By definition, the global mass matrix Mglob is assembled from the element mass matrices,

see Eq. (10) and (11). Using the matrix bound for Mℓ we obtain

Mglob ≥
∑

ℓ

(Pℓ)Tλmin(M
ℓ)I Pℓ.

The matrix on the right-hand side of this inequality is a diagonal matrix. Since at least

one term of the form λmin(M
ℓ) contributes to each diagonal entry, we conclude that

Mglob ≥ min
ℓ
λmin(M

ℓ)I,

where the identity matrix in this equation has the same dimensions as the global mass

matrix Mglob. Furthermore, we obtain

λmin(Mglob) ≥ λmin

(

min
ℓ
λmin(M

ℓ)I
)

= min
ℓ
λmin(M

ℓ).

Since the global mass matrix M with incorporated Dirichlet boundary conditions is con-

structed by deleting columns and rows of Mglob, we can use Cauchy’s interlace theorem

and Eq. (4) to conclude the proof.
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3.5. Putting things together

Now we are ready to formulate the main result of this section.

Theorem 14. The condition number of the stiffness matrix is bounded by

κ(S) ≤ (diam(Ω))2

(
D∏

d=1

(pd + 1)

)
max

ℓ
λmax(S

ℓ)

min
ℓ
λmin(Mℓ)

. (14)

Proof. This result is proved by combining Corollary 12, Lemma 10 and Lemma 13.

Thus we have to analyze the maximum eigenvalues of the element stiffness matrices and

the minimum eigenvalues of the element mass matrices.

For the bound of the condition number we will consider the different cases of dimension

D individually. The basic idea is to transform the element stiffness matrices and the

element mass matrices to a standard element and to bound the resulting matrices using

compactness results.

4. The case D = 1

This section considers the case D = 1. While this special case enables us to explain

the main steps of our approach, it allows for some simplifications. Indeed, the geometry

mapping G and its Jacobian are scalar-valued functions, thus ω = |Ġ|.

The next section shows how to transform the integrals and the basis functions to the

unit interval. The following two sections derive the bound for the eigenvalues of the

element stiffness and mass matrices. The results then allow us to formulate a bound for

the condition number of the global stiffness matrix in Section 4.4.

4.1. Transformation to the unit interval

When we use B-splines/NURBS of polynomial degree p as basis functions, p + 1 basis

functions are defined on each non-empty element Eℓ = [kℓ, kℓ+1]. The element stiffness

and mass matrices Sℓ = (sℓi,j)i,j and Mℓ = (mℓ
i,j)i,j have the entries

sℓi,j =

∫ kℓ+1

kℓ

ψ̇i(ξ)ψ̇j(ξ)

ω(ξ)
dξ and mℓ

i,j =

∫ kℓ+1

kℓ
ψi(ξ)ψj(ξ)ω(ξ) dξ, (15)

respectively. The dot denotes the derivative with respect to the variable ξ.
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The element stiffness and mass matrices for the element Eℓ depend on 2p+1 knot spans

with lengths hℓ−p, hℓ−p+1, . . ., hℓ, . . ., hℓ+p. Fig. 4 illustrates the notation of the knots and

lengths of knot spans. Note that we could also have multiple knots, e.g., ki = ki+1, which

lead to a vanishing knot span hi = 0.

kℓ−2 kℓ−1 kℓ kℓ+1 kℓ+2 kℓ+3

hℓ−2 hℓ−1 hℓ hℓ+1 hℓ+2

Figure 4: Illustration of knots and lengths of knot spans.

In the NURBS case, the element stiffness and mass matrices depend additionally on

p + 1 weights wi, wi+1, . . ., wi+p corresponding to the p + 1 NURBS basis functions ψi,

ψi+1, . . ., ψi+p defined on Eℓ.

Given an element Eℓ, we will transform the integrals from Eℓ to the unit element [0, 1].

We will denote the transformed functions defined on the unit element by

ψ̂i = ψi ◦ α
ℓ, ˆ̇Gℓ = Ġ ◦ αℓ,

etc., where αℓ is the affine mapping

αℓ : R → R : ζ 7→ ξ(ζ) = hℓζ + kℓ,

which satisfies αℓ(0) = kℓ and αℓ(1) = kℓ+1. Note that ψ̂i depends also on the number ℓ of

the given element. In order to keep the notation simple, we omitted the index ℓ here.

Fig. 5 illustrates the mapping αℓ, which maps the unit element to the element Eℓ. In

particular it shows how the mapping αℓ modifies the knots specifying the NURBS basis

functions ψi. The knots are scaled and translated such that the knot span [kℓ, kℓ+1] becomes

the unit interval [0, 1].

The argument of the transformed functions ψ̂i and
ˆ̇Gℓ, defined on the unit interval, is

ζ , whereas ξ denotes the argument of the functions ψi and Ġ, defined on the element Eℓ.

The functions ψ̂i, . . . , ψ̂i+p are NURBS basis functions of degree p, whose support in-

cludes the knot span [0, 1]. The additional 2p knots needed to define these NURBS basis

functions are contained in the interval [−pK,+pK + 1], where the constant K was intro-

duced in Assumption 1.
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αℓ

ζ ξ

ψ̂i
ψi

R

0 1 kℓ kℓ+1

hℓ−1 hℓ hℓ+1h
ℓ−1

hℓ 1 h
ℓ+1

hℓ

Figure 5: The mapping αℓ : R → R, which maps the unit element [0, 1] to the element Eℓ = [kℓ, kℓ+1].

The function ψ̂i : [0, 1] → R is given by ψ̂i = ψi ◦ α
ℓ.

In addition, according to Assumption 2, the weights used to define these functions

belong to the interval [−1/W,W ]. Consequently, given an element Eℓ, the functions ψ̂j ,

whose support includes the transformed element [0, 1], depend on parameters (the knots

and weights) which vary within a bounded and closed set. This observation will be exploited

in the following sections to bound the eigenvalues of the element stiffness and mass matrices.

4.2. The maximum eigenvalue of the element stiffness matrix

First we consider the maximum eigenvalue of the element stiffness matrix, which is needed

to bound the numerator of the condition number. We obtain the following result:

Lemma 15 There exists a positive constant λ, which depends solely on K,W and p, such

that the maximum eigenvalue of the element stiffness matrix satisfies

λmax(S
ℓ) ≤

1

hℓωℓ
min

λ. (16)

Proof. We consider an entry (15) of the element stiffness matrix. By factoring out the

term

max
ξ∈Eℓ

1

ω(ξ)
=

1

min
ξ∈Eℓ

ω(ξ)
=

1

ωℓ
min

,

it can be rewritten as

sℓi,j =
1

ωℓ
min

kℓ+1
∫

kℓ

ψ̇i(ξ)ψ̇j(ξ)
ωℓ
min

ω(ξ)
dξ.
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We transform the integrals from the knot span [kℓ, kℓ+1] to the interval [0, 1]. The deriva-

tives of the NURBS basis functions satisfy

ˆ̇
ψi = (

∂

∂ξ
ψi) ◦ α

ℓ =
∂

∂ζ
(ψi ◦ α

ℓ)
1

hℓ
=

∂

∂ζ
ψ̂i

1

hℓ
=

˙̂
ψi

1

hℓ
.

Note that
ˆ̇
ψi are the transformations of the derivatives, whereas

˙̂
ψi are the derivatives of

the transformed functions. Taking dξ = hℓdζ into account, we rewrite the element stiffness

matrix as

Sℓ =
1

hℓωℓ
min

Ŝℓ, (17)

where the entries ŝℓi,j of the normalized element stiffness matrix Ŝℓ are

ŝℓi,j =

1∫

0

˙̂
ψi(ζ)

˙̂
ψj(ζ)

ωℓ
min

ω̂(ζ)
︸ ︷︷ ︸

(⋆)

dζ.

These entries depend on the derivatives
˙̂
ψi of NURBS basis functions which are determined

by parameters from a bounded set of knots and weights, as described in Section 4.1, and

on the weight function (⋆), which varies in the interval [0, 1]. Consequently, the normalized

element stiffness matrices belong to a bounded set of symmetric matrices, whose bounds

depend on the constants K and W and the polynomial degree p of the basis functions. We

can therefore use Lemma 4 to bound the matrix from above,

Ŝℓ ≤ λI, or, equivalently, λmax(Ŝ
ℓ) ≤ λ,

with a strictly positive constant λ which depends solely on K, W and p. The proof is

completed by combining this observation with (17).

4.3. The minimum eigenvalue of the element mass matrix

We consider the minimum eigenvalue of the element mass matrix in order to bound the

denominator of the condition number via the Friedrichs inequality. The bound depends on

the polynomial degree p and the constants K and W , see Assumptions 1 and 2.

Lemma 16 There exists a positive constant λ, which depends solely on K,W and p such

that the minimum eigenvalue of the element mass matrix satisfies

λmin(M
ℓ) ≥ hℓωℓ

minλ. (18)
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Proof. We consider an entry (15) of the element mass matrix. By factoring out the term

ωℓ
max and transforming the integrals to the unit interval, it can be rewritten as

mℓ
i,j = ωℓ

max

kℓ+1
∫

kℓ

ψi(ξ)ψj(ξ)
ω(ξ)

ωℓ
max

dξ = hℓωℓ
max

1∫

0

ψ̂i(ζ)ψ̂j(ζ)
ω̂(ζ)

ωℓ
max

dζ.

︸ ︷︷ ︸

= m̂ℓ
i.j

(19)

We use the integrals m̂ℓ
i,j in the rightmost term to define the normalized element mass

matrix M̂ℓ. Clearly, we have Mℓ = hℓωℓ
maxM̂

ℓ.

In addition we consider simplified normalized element mass matrices ˆ̂
Mℓ with the entries

ˆ̂mℓ
i,j =

1∫

0

ψ̂i(ζ)ψ̂j(ζ)dζ,

which are guaranteed to be positive definite, since the NURBS basis functions ψ̂i on each

knot span are linearly independent. The knots and weights which determine these functions

vary within a closed and bounded set, as described in Section 4.1. Thus, the simplified

element mass matrices belong to a closed and bounded set of symmetric and positive

definite matrices, whose bounds depend on the constants K and W and the polynomial

degree p. We use the second part of Lemma 4 to bound these matrices from below,

ˆ̂
Mℓ ≥ λI, (20)

where the positive constant λ depends solely on K,W and p.

On the other hand, Assumption 9 guarantees

ω̂(ζ)

ωℓ
max

≥ δℓ,

since the ranges of ω = |Ġ| on [kℓ, kℓ+1] and ω̂ = | ˆ̇G| on [0, 1] are identical. By swapping

summation (which arises due to matrix-vector multiplication) and integration, a short

computation confirms that

cTM̂ℓc =

1∫

0

(
∑

i

ciψ̂i(ζ)

)2
ω̂(ζ)

ωℓ
max

dζ ≥ δℓ
1∫

0

(
∑

i

ciψ̂i(ζ)

)2

dζ = δℓ cT ˆ̂
Mℓc

holds for all vectors c. This implies

M̂ℓ ≥ δℓ ˆ̂
Mℓ. (21)

Using the definition δℓ =
ωℓ
min

ωℓ
max

, the lower bound (18) follows from (19), (20) and (21).
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4.4. The bound of the condition number

The previous observations and Assumptions 1, 2 and 9 lead to the following Theorem:

Theorem 17. Let L denote the length of the physical domain. The condition number of

the stiffness matrix is bounded by

κ(S) ≤ C L2 1

min
ℓ
(hℓωℓ

min)
2
, (22)

where the constant C depends solely on K,W and p.

Proof. This bound is obtained by the general result of Theorem 14 with the particular

bounds for the eigenvalues of the element stiffness and mass matrices, which were presented

in Lemmas 15 and 16. The ratio of the two constants λ/λ multiplied with the factor

(p + 1), which is inherited from the estimate of the global stiffness matrix by element

stiffness matrices, defines another constant C, which depends onK,W and p. The diameter

diam(Ω) of the physical domain is given by the length L of the physical domain.

Remark 18 The constant C grows monotonically with increasing values ofK andW since

the associated bounded sets of symmetric matrices grow when enlarging these values. When

considering different parameterizations of a given computational domain, the constants C

are generally different, since the values of K and W might be different. The constants K

and W depend on the knots and on the weights. If the knots and the weights are fixed,

the constants K and W do not depend on the location of the control points. For small

variations of knots and weights, the constants C are in the same order of magnitude.

The result for the bound of the condition number admits a geometric interpretation.

We denote with ωℓ
avg the average value of ω = |Ġ| in the element Eℓ, i.e.,

ωℓ
avg =

1

hℓ

kℓ+1
∫

kℓ

|Ġ(ξ)|dξ =
1

hℓ
|G(kℓ+1)−G(kℓ)| =

1

hℓ
hℓphys,

where hℓphys denotes the length of the knot span in the physical domain. Thus we have

hℓωℓ
avg = hℓphys. For sufficiently fine discretizations, the value of Ġ is nearly constant in the

element [kℓ, kℓ+1], thus

ωℓ
min ≈ ωℓ

max ≈ ωℓ
avg.
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Hence we can approximate the bound for the condition number by

C L2 1

min
ℓ
(hℓphys)

2
,

where the constant C depends solely on K,W and p. This expression indicates that the

smallest value of the bound is obtained by a uniform distribution of the knot spans in the

physical domain. We shall reconsider this observation in Example 2 (see Section 7).

Both the condition number and its bound are invariant under uniform scaling and

translations. We consider the case of scaling.

If the physical domain is scaled by a factor of f (which is realized by multiplying G

with f), then both the minimum and the maximum eigenvalue of the stiffness matrix S

are scaled by 1/f . Consequently, the condition number remains unchanged.

Now we consider the various quantities in the bound. The length L of the domain is

scaled by f , and so is ω = |Ġ|. All other quantities remain unchanged. Thus, the bound

is independent of f .

5. The case D = 2

We proceed similarly to the one-dimensional case. After transforming the integrals to the

unit square, we derive the bounds for the eigenvalues of the element stiffness and mass

matrices. This allows us to formulate a bound for the condition number of the global

stiffness matrix.

5.1. Transformation to the unit square

Each element Eℓ is the Cartesian product of two intervals,

Eℓ = [kℓ11 , k
ℓ1+1
1 ]× [kℓ22 , k

ℓ2+1
2 ].

It is an axis-aligned box in the parameter domain with edges of lengths hℓ11 and hℓ22 , both of

which are non-zero for non-empty elements. For later reference we introduce the following

abbreviation:

Hℓ
2 =

(hℓ11 )
2 + (hℓ22 )

2

hℓ11 h
ℓ2
2

(23)

Note that ℓ = (ℓ1, ℓ2) is a multi-index which identifies the elements.
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The geometry mapping G is a vector-valued function. The matrix N used to transform

the integrals from the physical domain to the parameter domain is a symmetric and positive

definite 2× 2 matrix, see (6). Its entries will be denoted by

N =

(

N1,1 N1,2

N2,1 N2,2

)

, with N1,2 = N2,1.

The element stiffness and mass matrices Sℓ = (sℓi,j)i,j and Mℓ = (mℓ
i,j)i,j have the entries

sℓi,j =

∫

Eℓ

∇ψT
i (ξ)N(ξ)∇ψj(ξ) dξ and mℓ

i,j =

∫

Eℓ

ψi(ξ)ψj(ξ)ω(ξ) dξ, (24)

where we use multi-indices i = (i1, i2) and j = (j1, j2) to identify the NURBS basis func-

tions.

In the sequel we will transform the integrals from an element Eℓ to the unit element

[0, 1]2. We will denote the transformed functions defined on the unit element by

ψ̂i = ψi ◦ α
ℓ, N̂ℓ = N ◦ αℓ, Ĵℓ = J ◦ αℓ,

etc., where αℓ is the affine mapping

αℓ : R
2 → R

2 : ζ = (ζ1, ζ2) 7→ ξ(ζ) = (hℓ11 ζ1 + kℓ11 , h
ℓ2
2 ζ2 + kℓ22 ),

which satisfies [0, 1]2 → Eℓ. Clearly, the transformed functions depend on the element

index ℓ also. This dependency, however, is omitted in the notation in order to keep it as

simple as possible.

5.2. The maximum eigenvalue of the element stiffness matrix

Lemma 19 The maximum eigenvalue of the element stiffness matrix is bounded from

above by

λmax(S
ℓ) ≤ λmax

(
Nℓ

max

)
Hℓ

2 λ, (25)

where Hℓ
2 is defined in Eq. (23) and the strictly positive constant λ depends solely on K,W

and the polynomial degrees p1 and p2.

Proof. We denote the derivative of ψi with respect to ξk by ψi|k = (∂ψi)/(∂ξk). The element

stiffness matrix (24) can be represented as a sum of four matrices,

Sℓ = Aℓ
1,1 +Aℓ

1,2 +Aℓ
2,1 +Aℓ

2,2,

26



which correspond to the four entries of the matrix N, i.e.,

Aℓ
α,β = (aℓα,β,i,j)i,j with aℓα,β,i,j =

∫

Eℓ

ψi|α(ξ)ψj|β(ξ)Nα,β(ξ)dξ,

where the indices α, β take the values 1 and 2. For each of these matrices we define an

associated normalized version by factoring out N ℓ
α,β,max and transforming the integral to

the unit square,

Âℓ
α,β = (âℓα,β,i,j)i,j with âℓα,β,i,j =

∫

[0,1]2

ψ̂i|α(ζ)ψ̂j|β(ζ)
N̂α,β(ζ)

N ℓ
α,β,max

︸ ︷︷ ︸

(⋆)

dζ. (26)

We note that the term marked with (⋆) is bounded in [−1, 1].

The transformation to the unit square introduces the factor hℓ11 h
ℓ2
2 , while the transfor-

mation of the derivative is governed by the chain rule

∂

∂ξi
=

1

hℓii

∂

∂ζi
.

Consequently, the element stiffness matrix is a weighted sum of the four normalized ma-

trices,

Sℓ = N ℓ
1,1,max

hℓ22
hℓ11

Âℓ
1,1 +N ℓ

1,2,maxÂ
ℓ
1,2 +N ℓ

1,2,maxÂ
ℓ
2,1 +N ℓ

2,2,max

hℓ11
hℓ22

Âℓ
2,2.

The entries of the normalized matrices Âℓ
α,β are determined by derivatives ψ̂i|α of tensor-

product NURBS basis functions whose knots and weights vary within a closed and bounded

set of parameters (according to Assumptions 1 and 2). Thus, the derivatives are bounded,

too. Furthermore, the entries of the normalized matrices depend on bounded functions with

values in [−1, 1] (marked by (⋆) in Eq. (26)). Consequently, all these normalized matrices

belong to a bounded set of symmetric matrices. Lemma 4 guarantees the existence of an

upper bound

Âℓ
α,β ≤ λI,

which depends solely on K,W and the polynomial degrees p1 and p2. We use this obser-

vation to bound the largest eigenvalue of the element stiffness matrix

λmax(S
ℓ) ≤ λ

(

N ℓ
1,1,max

hℓ22
hℓ11

+N ℓ
1,2,max +N ℓ

1,2,max +N ℓ
2,2,max

hℓ11
hℓ22

)

︸ ︷︷ ︸

= B

.
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Finally we rewrite and bound the term B on the right-hand side,

B = hℓ11 h
ℓ2
2

(

1/hℓ11

1/hℓ22

)T

Nℓ
max

(

1/hℓ11

1/hℓ22

)

≤ λmax

(
Nℓ

max

)
hℓ11 h

ℓ2
2

(

1/hℓ11

1/hℓ22

)T (

1/hℓ11

1/hℓ22

)

︸ ︷︷ ︸

= Hℓ
2

based on the inequality

xTNx ≤ λmax(N)xTx,

which is valid for any real quadratic matrix N ∈ R
n×n and any vector x ∈ R

n.

5.3. The minimum eigenvalue of the element mass matrix

Again we use Assumptions 1, 2 and 9 in order to obtain the second bound.

Lemma 20 There exists a positive constant λ, which depends solely on K,W and the

polynomial degrees p1 and p2, such that the minimum eigenvalue of the element mass

matrix satisfies

λmin(M
ℓ) ≥ hℓ11 h

ℓ2
2 ω

ℓ
minλ. (27)

Proof. The proof is analogous to the case D = 1. The only difference appears when

transforming the integrals to the unit square, where the original element mass matrix

and the normalized one are now related by Mℓ = hℓ11 h
ℓ2
2 ω

ℓ
maxM̂

ℓ, due to the bivariate

integration.

5.4. The bound of the condition number

The previous two Lemmas and Theorem 14 imply the following result:

Theorem 21. Let hℓ11 and hℓ22 denote the lengths of the knot spans in the two parame-

ter directions in the parameter domain. The condition number of the stiffness matrix is

bounded by

κ(S) ≤ C (diam(Ω))2
max

ℓ

(
λmax(N

ℓ
max)H

ℓ
2

)

min
ℓ

(
hℓ11 h

ℓ2
2 ω

ℓ
min

) , (28)

where Hℓ
2 is defined in Eq. (23) and the constant C depends solely on K,W and the poly-

nomial degrees p1 and p2.
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Note that the constants λ, λ and the factor

(
2∏

d=1

(pd + 1)

)

are combined to the constant C.

Similar to the observation in Remark 18, the constant C can be shown to grow monotoni-

cally with increasing values of K and W , since the associated bounded sets of symmetric

matrices grow when enlarging these values.

We can further split the expression in Eq. (28) to separate the terms depending on the

geometry mapping from those that depend on the length of the knot spans,

κ(S) ≤ C (diam(Ω))2
max

ℓ

(
λmax(N

ℓ
max)

)

min
ℓ
ωℓ
min

max
ℓ
Hℓ

2

min
ℓ
(hℓ11 h

ℓ2
2 )
. (29)

Again, the bound can be interpreted in a geometric way. The matrixN can be expressed

as

N =
1

ω

(

‖G|2‖
2 −G|1 ·G|2

−G|1 ·G|2 ‖G|1‖
2

)

,

where G|i denotes the partial derivative of the geometry mapping with respect to ξi. For

a general 2× 2 matrix A with

A =

(

a1,1 a1,2

a2,1 a2,2

)

,

the maximum eigenvalue is given by

λmax(A) =
1

2

(

a1,1 + a2,2 +
√

(a1,1 − a2,2)2 + 4a1,2a2,1

)

.

Using this closed-form representation we can rewrite λmax(N
ℓ
max) ≈ max

ξ∈Eℓ

Ḡ(ξ)
ω(ξ)

with

Ḡ(ξ) =
1

2

(

‖G|1‖
2 + ‖G|2‖

2 + ((‖G|1‖
2 − ‖G|2‖

2)2 + 4 cos2(α)‖G|1‖
2‖G|2‖

2)
1

2

)

,

where α represents the angle between the parameter lines. Similar to the case D = 1 we

define the average value of ω in the element Eℓ by

ωℓ
avg =

1

hℓ11 h
ℓ2
2

∫

Eℓ

ω(ξ)dξ =
1

hℓ11

1

hℓ22
Aℓ,

where Aℓ denotes the area of the element Eℓ in the physical domain. Thus we have

hℓ11 h
ℓ2
2 ω

ℓ
avg = Aℓ.

Consider the case of a very fine isogeometric discretization, such that the various quanti-

ties in our bound do not vary significantly within the elements, and hence also ωℓ
min ≈ ωℓ

avg.
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Then the bound in Eq. (28) can be approximated by

C (diam(Ω))2
max
ℓ,ξ

Ḡ(ξ)
(
(hℓ11 )

2 + (hℓ22 )
2
)

min
ℓ
(Aℓ)2

.

In order to obtain a small bound, the lengths of both partial derivatives should be close to

equal and the angle between them should be close to orthogonal. Furthermore, elements

with a small area should be avoided, i.e., the area should not vary too much between

elements in the physical domain.

Both the condition number and its bound are invariant under uniform scaling, trans-

lations and rotations, i.e., under Euclidean similarities. We consider the case of scaling.

If the physical domain is scaled by a factor of f (which is realized by multiplying G

with f), then both the minimum and the maximum eigenvalue of the stiffness matrix S

remain unchanged and hence the condition number remains unchanged.

Now we consider the various quantities in the bound. The diameter of the domain is

scaled by f , but ω = |detJ| is scaled by f 2. All other quantities remain unchanged. Thus,

the bound is independent of f .

6. The case D = 3

The derivation of the bound for the condition number is analogous to the two-dimensional

case. We give only the main result, where we need the expression

Hℓ
3 =

(hℓ22 )
2(hℓ33 )

2 + (hℓ11 )
2(hℓ33 )

2 + (hℓ11 )
2(hℓ22 )

2

hℓ11 h
ℓ2
2 h

ℓ3
3

, (30)

which involves lengths of knot spans hℓii , i = 1, 2, 3.

Theorem 22. Let hℓ11 , h
ℓ2
2 and hℓ33 denote the lengths of the knot spans in the three pa-

rameter directions in the parameter domain. The condition number of the stiffness matrix

is bounded by

κ(S) ≤ C (diam(Ω))2
max

ℓ

(
λmax(N

ℓ
max)H

ℓ
3

)

min
ℓ

(
hℓ11 h

ℓ2
2 h

ℓ3
3 ω

ℓ
min

) , (31)

where Hℓ
3 is defined in Eq. (30) and the constant C depends solely on K,W and the poly-

nomial degrees pi, i = 1, 2, 3 of B-spline/NURBS basis functions in the three parameter

directions.
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We can further split the bound in Eq. (31) to separate the term which depends on the

geometry mapping from the term which quantifies the influence of the knot spans,

κ(S) ≤ C (diam(Ω))2
max

ℓ
λmax(N

ℓ
max)

min
ℓ
ωℓ
min

max
ℓ
Hℓ

3

min
ℓ
(hℓ11 h

ℓ2
2 h

ℓ3
3 )
.

In the case D = 3 we cannot derive a simple closed formula for the maximum eigenvalue

of the matrix Nℓ
max and thus it is difficult to derive a geometric interpretation. One may

guess though that the findings of the case D = 2 (orthogonal parameter directions, similar

lengths of edges in the physical domain) apply to this situation, too. Furthermore, for fine

discretizations, the expression ωℓ
minh

ℓ1
1 h

ℓ2
2 h

ℓ3
3 , appearing in the denominator of the bound,

approximates the volume of an element in the physical domain. Hence, we obtain a small

bound if the volumes of the elements in the physical domain do not vary too much.

Both the condition number and its bound are invariant under uniform scaling, trans-

lations and rotations, i.e., under Euclidean similarities. We consider the case of scaling

by a factor f . Applying this scaling, both the maximum and the minimum eigenvalue of

the global stiffness matrix S are multiplied by a factor of f , hence the condition number

remains unchanged. Considering the quantities in the bound, we obtain that the diameter

of the domain is scaled by f . The term ω = |detJ| is scaled by f 3. The matrix N and its

eigenvalues are now scaled by f . Putting things together, it is confirmed that the bound

is invariant under uniform scaling.

7. Examples

Example 1: Asymptotic behavior

The first example illustrates the fact that the bounds for the condition number derived in

the previous sections are asymptotically optimal.

The case D = 1. We consider a B-spline parameterization of the unit interval. We use

uniform knot vectors and the identity as geometry mapping, thus K =W = 1, ω = 1 and

therefore also ωℓ
min = ωℓ

max = 1. We obtain the bound

κ(S) ≤ C L2 1

min
ℓ
(hℓωℓ

min)
2
= C L2 1

h2
.

In Table 2 we analyze the behavior of the condition number and its bound if we apply

uniform h-refinement. We consider basis functions of degree p = 2 and of degree p = 3.
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We display the condition number κ(S), the computed bound and the ratios of these values

of consecutive refinement levels. For the sake of brevity we display only the coefficients

of the bounds in the table. Each coefficient is multiplied by C, which depends on K,W

and p. We obtain that the ratio of condition numbers of two consecutive refinement levels

converges to 4. The same behavior can be found for the bound. Hence, if we apply uniform

h-refinement, then the condition number and its bound scale as h−2. The behavior of the

condition number of the stiffness matrix for IGA has also been studied recently, see, e.g.,

[36].

p = 2 p = 3

refinement

level
h κ(S)

ratio to

previous

level

κ(S)

ratio to

previous

level

bound

ratio to

previous

level

0 1 1.00 1.66 1

1 1
2 1.00 1.00 3.38 2.03 22 4

2 1
4 2.78 2.78 3.51 1.04 24 4

3 1
8 10.05 3.61 10.86 3.09 26 4

4 1
16 39.23 3.90 41.43 3.81 28 4

5 1
32 155.95 3.98 163.96 3.96 210 4

6 1
64 622.84 3.99 654.18 3.99 212 4

7 1
128 2490.39 3.99 2615.11 3.99 214 4

Table 2: Condition number, bound (without the factor C) and ratios to the previous level for different

refinement levels using quadratic (p = 2) or cubic (p = 3) basis functions.

The case D = 2. A similar asymptotic behavior can also be observed in higher dimensions

and also for different parameterizations than the identity mapping, or if the refinement

algorithm is just applied in one parameter direction. As an example we consider a param-

eterization of a quarter annulus with knot vectors

[0, 0, 0, 0.5, 1, 1, 1]× [0, 0, 0, 1, 1, 1]

for the initial parameterization. We apply a uniform dyadic knot refinement several times.

In Table 3 we display the condition number κ(S), the computed bound and the ratios of

these values of consecutive refinement levels. For the sake of brevity we display only the
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coefficients of the bounds in the table. Each coefficient is multiplied by C, which depends

on K,W, p1 and p2. Since we use quadratic NURBS, we have p1 = p2 = 2. We have equal

knot spans in both parameter directions, thus we have K = 1 for all refinement levels. For

refinement level 0, the weights are bounded in [1/W,W ] with W = 2
√
2

1+
√
2
. The constant W

to bound the weights converges to 1 as the level increases.

refinement

level
κ(S)

ratio to

previous level
bound

ratio to

previous level

0 2.93 8.62 · 101

1 4.86 1.66 3.60 · 102 4.17

2 5.63 1.16 1.47 · 103 4.08

3 10.72 1.91 5.94 · 103 4.04

4 43.06 4.02 2.39 · 104 4.02

5 175.35 4.07 9.57 · 104 4.01

Table 3: Condition number, bound (without the factor C) and ratios to the previous level for different

refinement levels.

This example confirms that the bound is asymptotically optimal since both sequences of

ratios converge to 4 as the level of refinement increases.

Example 2 - Compensation of non-uniform knots by the geometry mapping

Generally, one may expect that the use of highly non-uniform knots leads to large values of

the condition number. To some extent, however, the small knot spans can be compensated

by a suitable geometry mapping.

The case D = 1. We consider quadratic B-splines with a knot vector

[0, 0, 0,
1

2
,
3

4
,
7

8
,
15

16
,
31

32
,
63

64
, 1, 1, 1],

see Fig 6. Note the short knot spans in the right part of the knot vector.

Figure 6: Illustration of the knot vector.

We consider two different parameterizations of the unit interval. On the one hand,

we use the identity mapping. On the other hand, we consider the parameterization with
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equidistant control points. For both parameterizations, the constants p = 2, K = 4 and

W = 1 are the same. Thus, the constant C is also the same.

Table 4 displays the condition numbers κ(S) and the bounds for the two considered

parameterizations. The geometry mapping with equidistant control points instead of the

identity mapping leads to a much better condition number and bound.

identity mapping equidistant control points

κ(S) 43.94 10.93

bound 4.10 · 103 1.44 · 102

Table 4: Condition number and bound (without the factor C) for two parameterizations with non-uniform

knots.

We will examine this phenomenon more closely. The plot in the left-hand side of Fig. 7

shows the function ω for both mappings. For the identity mapping we have ω = 1. The

mapping with equidistant control points produces a function ω which reaches large values

in regions with short knot spans. However, if we consider 1
hℓω

instead, which is shown in the

right picture, then we observe that it reaches high values for the identity mapping whereas

it remains fairly small for the mapping with equidistant control points. Thus, in the case

of the mapping with equidistant control points, a small value of hℓ is compensated by a

large value of ω, which leads to a more uniform distribution of elements in the physical

domain. Thereby this example confirms the geometric interpretation of the bound.

The case D = 2. The same effect can be observed in the two-dimensional case. We consider

different parameterizations of the unit square by quadratic B-splines with the knot vector

[0, 0, 0,
1

2
,
3

4
,
7

8
,
15

16
,
31

32
,
63

64
,
127

128
,
255

256
, 1, 1, 1]

in both parameter directions. We compare the identity mapping with a geometry mapping,

where the control points are placed in a way such that the elements in the physical domain

have equal size and shape. Fig. 8 shows the physical domains with control points and

elements for the two analyzed parameterizations.

We compare the condition number and its bound for both parameterizations in Table 5.

Again, C depends on the same constants p1 = p2 = 2, K = 4 and W = 1.
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Figure 7: Compensation of a non-uniform knot vector by a suitable geometry mapping: The function ω

(left) and the term 1
hℓω

(right) for the identity mapping (blue) and the mapping with equidistant control

points (red).

identity mapping
geometry mapping

with equal physical elements

κ(S) 2.11 · 102 8.19

bound 1.68 · 107 1.09 · 107

Table 5: Condition number and bound (without the factor C) for two parameterizations of the unit square.

The parameterization with equal physical elements leads to a better condition number and

bound.

The case D = 3. Again, an analogous observation can be drawn in the three-dimensional

case. We consider different parameterizations of the unit cube by quadratic B-splines with

the knot vector

[0, 0, 0,
1

2
,
3

4
,
7

8
,
15

16
,
31

32
,
63

64
,
127

128
,
255

256
, 1, 1, 1]

in all three parameter directions. We compare the identity mapping with a geometry

mapping, where the coordinates of the control points are distributed uniformly.

We compare the condition number and its bound for both parameterizations in Table 6.

Again, C depends on the same constants p1 = p2 = p3 = 2, K = 4 and W = 1.

The parameterization with equidistant control points leads to a better condition number

and bound.

35



Figure 8: The parameterization of the physical domains of the unit square for the identity mapping (left)

and a geometry mapping with equal elements in the physical domain (right). The red dots indicate the

positions of the control points, the black lines indicate the elements in the physical domain.

identity mapping equidistant control points

κ(S) 1.11 · 103 2.79 · 101

bound 1.59 · 1012 1.78 · 107

Table 6: Condition number and bound (without the factor C) for two parameterizations of the unit cube

with non-uniform knots.

Example 3 - Quantifying the parameterization quality

We consider different parameterizations of the unit square. We use quadratic B-splines

with the knot vector

[0, 0, 0, 1, 1, 1]

in both parameter directions. Thus we need 9 control points to define the initial parame-

terization. We set the control points to

d0,0 = (0, 0) d1,0 = (a1, 0) d2,0 = (1, 0)

d0,1 = (0, a2) d1,1 = (a3, a4) d2,1 = (1, a5)

d0,2 = (0, 1) d1,2 = (a6, 1) d2,2 = (1, 1).

In order to preserve the shape of the unit square, the variables ai, i = 1, . . . , 6 should be

chosen in the open interval (0, 1). We generate uniformly distributed random numbers ai

between 0 and 1. Then we apply a uniform refinement of the geometry three times. For

every parameterization constructed in this way we compute the condition number and its

bound as described in the previous sections. In Fig. 9 we show the condition number and

the coefficient of the computed bound for 1000 randomly constructed parameterizations.
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The points do not lie on a straight line. The more the random parameterization devi-

ates from the identity parameterization, the higher is the deviation of data points from a

straight line. However, all data points lie in a bounded region which forms roughly a cone

with apex at the optimum. Morever, both boundaries are lines with positive slope. The

parameterization with the smallest bound corresponds to the parameterization with the

smallest condition number.

For parameterizations with higher condition numbers, we cannot directly compare two

parameterizations by just considering the bound for the condition number. A parame-

terization with a smaller bound does not necessarily have a smaller condition number.

However, both numbers are strongly related to each other.

The example demonstrates that the constructed bound reflects the quality of the pa-

rameterization in the sense that small bounds are correlated with small condition numbers.

Therefore one should try to minimize the bound in order to obtain a parameterization with

a small condition number.

In Fig. 9 we highlighted the data of three special parameterizations. The leftmost point

indicates the identity mapping which is obviously the best parameterization in this exam-

ple. The middle point indicates some random parameterization with an average condition

number and bound. The rightmost highlighted point indicates a “bad” parameterization

with a high condition number and bound. In Fig. 10 we show the parameterizations of the

physical domain corresponding to the highlighted points in Fig. 9.

Example 4 - Investigation of the effect of singularities

We present an example which identifies the limitations of the bound: When we approach a

singular situation with several coinciding control points, then the bound grows significantly

faster than the condition number.

Let D = 1 and consider a B-spline parameterization of the unit interval with the

uniform knot vector

[0, 0, 0,
1

9
,
2

9
,
3

9
,
4

9
,
5

9
,
6

9
,
7

9
,
8

9
, 1, 1, 1],

degree p = 2 and control points

d0 = 0, d1 =
1

18
, d2 =

3

18
, d3 =

5

18
, d4 =

1

2
− τ, d5 =

1

2
,

d6 =
1

2
+ τ, d7 =

13

18
, d8 =

15

18
, d9 =

17

18
, d10 = 1,
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κ
(S

)

1
C
bound

102 103 104 105 106 107

5

10

25

50

Figure 9: Doubly logarithmic plot for the condition number (vertical axis) and the coefficient of the bound

(horizontal axis) for 1000 randomly constructed parameterizations of the unit square. The highlighted

points correspond to the parameterizations shown in Fig. 10.

Figure 10: Physical domain of the unit square constructed with a uniform parameterization (left), an

average parameterization (middle) and a “bad” parameterization with a high condition number and a high

bound (right).

which depend on a parameter τ . If τ tends to 0, then the three inner control points d4, d5

and d6 collapse into a single point. Since we have quadratic B-splines as basis functions,

this leads to exactly one nearly vanishing element in the physical domain.

We vary the parameter τ and examine the behavior of the condition number and its

bound. Table 7 presents different values of τ = 1
9
· 1
2n
, the corresponding values of the
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condition number, its bound and the ratios of consecutive values. For n = 0 we obtain

τ = 1
9
and hence the identity parameterization. For the sake of brevity we display only

the coefficients of the bounds in the table. Each coefficient is multiplied by a constant C,

which depends on identical values of K,W and p.

τ κ(S)
ratio to previous

distortion level
bound

ratio to previous

distortion level

1
9 12.69 8.10 · 101

1
9 · 1

2 19.93 1.57 3.24 · 102 4

1
9 · 1

22 33.92 1.70 1.30 · 103 4

1
9 · 1

23 58.08 1.71 5.18 · 103 4

1
9 · 1

24 100.77 1.73 2.07 · 104 4

1
9 · 1

25 179.41 1.78 8.29 · 104 4

1
9 · 1

26 330.50 1.84 3.32 · 105 4

1
9 · 1

27 628.15 1.90 1.33 · 106 4

Table 7: Condition number, bound (without the constant C) and ratios for different levels of distortion.

When we divide τ by 2, the condition number is multiplied approximately by 2, while

the bound is multiplied by 4. Thus the bound grows twice as fast as the condition number.

We want to identify the step of our estimates which causes this behavior.

We denote by Sτ the global stiffness matrix for a parameterization with the variable

τ , by Sτ/2 we denote the global stiffness matrix for a parameterization where we have the

parameter τ/2. The same notation is used for the global mass matrix, for the element

stiffness and element mass matrices and for the geometry mapping G.

First we consider the maximum eigenvalue of the stiffness matrix and its bound. We

obtain

λmax(Sτ/2) ≈ 2λmax(Sτ ), λmax(S
ℓ
τ/2) ≈ 2λmax(S

ℓ
τ ) and

1

ωℓ
min,τ/2

≈ 2
1

ωℓ
min,τ

,

which confirms that this part of the bound is asymptotically correct.

However, this is no longer true for the minimum eigenvalue of the stiffness matrix. We

observe that

λmin(Sτ/2) ≈ λmin(Sτ ), λmin(Mτ/2) ≈ λmin(Mτ ) and λmin(M
ℓ
τ/2) ≈

1

2
λmin(M

ℓ
τ ).
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Hence, we lose the asymptotic correctness for τ → 0 when we estimate the minimum

eigenvalue of the global mass matrix by the minimum of the minimum eigenvalue of the

element mass matrices. In this example, these two expressions do not scale with the same

factor, which leads to the different behavior of the condition number and its bound.

Example 5 - Comparing different parameterizations

We will conclude this section by giving a three-dimensional example of a real-world

object. In the framework of the EXCITING1 project, one of our tasks was to construct

a volumetric parameterization of the water passage of a turbine. The parameterization

of the domain provided the first step towards an isogeometric CFD simulation in order

to compute the velocity and the pressure of the flowing water. Since the domain of the

water passage has a rather complicated shape, it is divided into several patches that are

topologically equivalent to a cube. Each patch is parameterized individually. The final

parameterization consists of 8 patches, that fit together with C0-continuity. Fig. 11 shows

an illustration of a Kaplan turbine and the parameterization of the water passage between

two consecutive blades.

Figure 11: Illustration of a Kaplan turbine with 6 blades (left and middle). Parameterization of the water

passage between two consecutive blades, consisting of 8 patches, that are pieced together with C0-continuity

(right).

1Further information is available at the project web page www.exciting-project.eu
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Due to the complex shape of the domain we obtain several patches that have a nice

shape, such as the orange patch in the bottom, and others that look kind of distorted, like

the blue patch in the middle. In Fig. 12 we display these two patches. It is interesting to

compare the condition number of the stiffness matrix and its bound for those two different

parameterizations, in order to explore if the intuition of a “good” versus a “bad” patch is

consistent with the numerical computations.

Figure 12: Two patches of the 8-patch parameterization of the water passage. The blue patch (left) is

distorted in one parameter direction, while the orange patch (right) has a rather uniform shape.

Both patches are parameterized using the same degrees and knot vectors in the three

parameter directions, respectively. Hence, the constants C are the same for both patches.

We used quadratic B-splines with (5×6×4) control points for each patch. More details, also

concerning the construction of the patches, can be found in [37]. Table 8 displays the condi-

tion numbers κ(S) and the bounds for the two patches of the multi-patch-parameterization

of the water passage. The patch displayed in orange leads to a much better condition num-

ber and bound than the distorted patch displayed in blue. Hence – in this situation – the

intuition is in accordance with the numerical results.

blue patch orange patch

κ(S) 32.15 24.86

bound (divided by C) 1.34 · 105 4.39 · 103

Table 8: Condition number and bound (without the factor C) for two different patches of a multi-patch

parameterization.

It is also obvious that the bound exaggerates the effect of the worse parameterization

of the blue patch, which may be due to facts described in the previous example.
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8. Conclusions

In this paper we have investigated the condition number of the stiffness matrix for

the Poisson equation. More precisely, we derived bounds for the condition number for

dimensions D ≤ 3. The given bounds are invariant under scaling and asymptotically

optimal with respect to uniform refinement. In general, the bounds depend on the lengths

of the knot spans in the parameter domain and some term depending on the geometry

mapping. A parameterization can be optimized, such that non-uniform knot vectors can

be compensated by a suitable geometry mapping.

In general we can state that the size of the elements in the physical domain should

not vary too much, such that we do not get very small elements. Furthermore, the pa-

rameter lines should be as orthogonal as possible and the parameter directions (in the

two-dimensional case and in the three-dimensional case) should approximately have the

same length. Computing the bound for the condition number can help to decide where a

parameterization should be improved.

The given bounds can be applied to regular parameterizations with ω = | detJ| 6= 0

for all parameter values. As a limitation of the bound, it exaggerates the effect of near

singular parameterizations. This, however, should be no problem when using it in practice,

since it may help to avoid singular and near-singular parameterizations. Future work may

be devoted to possible improvements of this bound, to more precise estimates (instead

of bounds) of the condition number, to the evaluation of the constant C, and to the

applications of this bound for optimizing domain parameterizations in IGA.
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