Computation of Layered Reeb Graphs*

B. Strodthoff T, B. Jiittler'

Abstract

Reeb graphs represent the topological structure of a mani-
fold based on a scalar-valued, sufficiently smooth function
defined on it. The use of more than one function leads
to Reeb spaces, which are thus able to capture more fea-
tures of an object. The structure of the Reeb space of
a 3-manifold with boundary with respect to two scalar-
valued functions is captured by the layered Reeb graph.
We present an efficient algorithm for computing such lay-
ered Reeb graphs, using only a boundary representation
of the underlying manifold.

1 Introduction

In this section, we will recall some definitions and proper-
ties from previous works.

1.1 Reeb graphs and -spaces

We begin by recalling the definition of Reeb graphs (see
also [1] for an introduction).

Definition 1 Consider a scalar-valued function f defined
on a d-manifold (or manifold with boundary) M. Points
mapped to the same function value form a level set, con-
nected parts of a level set are called level set components.
The Reeb graph of M with respect to f is obtained by con-
tracting every level set component to a point, maintaining
adjacency between level sets.

(a) (b)

Figure 1: Reeb graphs with respect to the height function,
which maps each point to its last Cartesian coordinate, of
(a) a 2-manifold in the plane, and (b) a 3-manifold in
space, containing an inner void.

*Supported by ESF Programme EuroGIGA-Voronoi
TJohannes Kepler University, Linz, Austria

In the following, we will restrict ourselves to the cases
d = 2 and d = 3 as shown in Figure 1, and assume that
M is embeddable in R3.

Reeb spaces were considered in 2008 by [4], generalizing
Reeb graphs by considering two functions f and g on the
manifold M.

Definition 2 Consider two scalar-valued functions f and
g on a 3-manifold M with boundary. Here, level sets con-
sist of all points with constant f- and g-value. The Reeb
space of M with respect to f and g is obtained by con-
tracting every level set component to a point, maintaining
adjacency between level sets.

1.2 The layered Reeb graph

In [6], we introduced Layered Reeb graphs as a discrete
representation for the structure of a Reeb space.

Definition 3 For a constant value ¢ attained by f, the
Reeb graph of the level set {f = c} with respect to g is
called a level set Reeb graph.

To obtain the layered Reeb graph, the arcs of the Reeb
graph with respect to f are subdivided into parts of equiv-
alent level set Reeb graphs. Then, the corresponding level
set Reeb graphs are added to these parts as a secondary
structure, see Figure 2.

P
e -
Figure 2: Layered Reeb graph. Left: vertical cut through

a 3-manifold. Middle: level sets of f. Right: layered Reeb
graph.

Since a point of a level set Reeb graph represents all
points with constant f and g-value, the Reeb space basi-
cally consists of the level set Reeb graphs for all f values,
stacked with intact adjacency. Thus, the layered Reeb
graph captures the Reeb space’s structure by grouping
parts with equivalent level set Reeb graphs.

1.3 Boundary-based construction of Lay-
ered Reeb graphs

Several algorithms are described in the literature which
compute the Reeb graph of a surface for a given surface
description or the Reeb graph of a three-dimensional do-
main for a given volumetric description (like e.g. [8, 2, 5]).
These algorithms typically allow for a rather general choice
of defining functions. However, if a three-manifold is given
in a boundary description, a volumetric description has to
be generated to apply these approaches, since the Reeb
graph of the manifold and the Reeb graph of its boundary
surface are, in general, different objects.

To avoid this, we describe a construction algorithm
which uses only the manifold’s boundary description. This
leads to substantial computational advantages, since the
generation of a volume description is costly, and a bound-
ary description is, typically, “smaller” (e.g. comparing the
number of elements in a surface- and volume mesh). How-
ever, the class of defining functions has to be restricted.

The boundary-based construction algorithm for Reeb
graphs of 3-manifolds with respect to the height function
was introduced in [7]. In [6], we extended this approach
to the computation of layered Reeb graphs, and defined a
feasible function class for the defining functions. In short,
the functions have to be chosen such that all changes in
level set Reeb graphs are induced by the boundary. Addi-
tionally, some basic geometric decisions have to be avail-
able inside the level sets. The following lemma gives a
sufficient condition for the boundary-based construction
to work, see [6] for details.

Lemma 1 Assume Vf x Vg # 0. Additionally, as-
sume that another function h is available such that
det(Vf,Vg,Vh) # 0. Then, the layered Reeb graph with
respect to f and g is determined by function values of f,g
and h on the boundary of M.

In this setup, f,g and h form a reparametrization of
space.

1.4 Jacobi sets

For functions fulfilling the condition in Lemma 1, changes
in the level set Reeb graph only occur on the boundary.
Jacobi sets, as introduced by [3], will help us identify those
points on the boundary where changes occur.

Definition 4 Let f and g denote the restrictions of f and
g to the boundary surface of M. The Jacobi set of f and
g consists of all points with Vf x Vg = 0, with V denoting
the gradient operator on the boundary surface of M.

In our setup, the Jacobi set is a network of curves, where
all vertices have even degree [3]. When sweeping through
the level sets with respect to f, the level set Reeb graphs’
vertices move along the arcs of the Jacobi set [6], see Fig-
ure 3. Thus, changes in the level set Reeb graphs occur
when sweeping past a vertex or local extremum of the Ja-
cobi set, marked by white dots in the figure.

(@) (b) (c)

a
f
I<g a5
Figure 3: For a simple example: (a) Object and Jacobi

set (b) level sets with level set Reeb graphs and (c) Reeb
space.

2 Boundary-based construction

algorithm

We will now describe an improved version of the algorithm
that was sketched in [6].

The layered Reeb graph is computed by sweeping
through the level sets with respect to f, see Algorithm 1.
First, all points of M are identified where changes occur
in the structure of level sets of f or in their level set Reeb
graphs. We will call these points events in the following.
Then, we sweep through the level sets of f, starting at
the lowest value. Information about the current level set
is stored in the status. At each event, the event handler
decides which level set components in the status are in-
fluenced by the event, and implements these changes. We
will now describe these elements in more detail.

Algorithm 1 computeLayeredReebGraph

find all events

sort events by increasing f-values

for all events e do
climb status-components to the f-level of e
identify components of status influenced by e
adapt status

end for

2.1 Status

The status contains information about the current level
set by storing a list of all its components. Each level set
component maintains a list containing all components of
its boundary, where each boundary component stores ref-
erences to the Jacobi curves it intersects. Additionally,
each level set component knows its current level set Reeb
graph.

2.2 Events

Considering the information stored in the status, there are
basically four types of events, where changes in the status
occur:
@® Events where the number or connectivity of level set
components changes.
@ Events where boundary components of a level set
component changes.

® Events where Jacobi references of a boundary com-
ponent change.
@ Events where a level set Reeb graph changes.
One can observe that ©® C @ C ® C @. In the following,
we will categorize an event by the smallest set it belongs
to, see Figure 4.

Figure 4: Layered Reeb graph of Figure 2, including cat-
egorization of events.

Events of the first three types occur in vertices or local
extrema of the Jacobi set. They can be identified effi-
ciently once the Jacobi set has been determined.

Type @ occurs if two vertices of the level set Reeb graph
(or, equivalently, the Jacobi arcs they move on) swap their
order with respect to ¢g. In Figure 4, the two vertices
marked by o and * in the level set Reeb graph are swapped,
and the graph connectivity changes. To find these events,
we do a preliminary sweep through the Jacobi set, main-
taining a list of intersected Jacobi arcs, sorted by the g-
value of their intersection with the f-level set.

2.3 Event handler

In every event, the corresponding event handler first asso-
ciates the event to the status, i.e. it identifies all elements
of the status which are influenced by the event. If the
event is not a local minimum of the Jacobi set, its lower
Jacobi arcs can be looked up in the status, directly. For
local minima of the Jacobi set, which are not local min-
ima of the surface, we can trace a curve along the f level
set to the next intersection with a Jacobi arc. In order to
determine whether a level set component contains a local
minimum of the surface, its boundary curves are traced
starting from their Jacobi references.

Afterwards, the event handler adapts the status. The
necessary changes to Jacobi references, level set- and
boundary components are rather straightforward. Thus,
we would like to concentrate on the implementation of the
changes to the level set Reeb graphs in the next section.

2.4 Handling level set Reeb graphs

In the brute force approach as outlined in [6], the level
set Reeb graph of a level set component is recomputed be-
tween each two successive events on the corresponding arc
of the Reeb graph. In order to do this, the level set’s

boundary curves are traced at an intermediate f-level.
Then, a sweep with respect to g provides the level set
Reeb graph, see e.g. Figure 5 for some results.

Figure 5: Objects with embedded level set graphs

This approach is obviously very costly. The computa-
tion time for the level set Reeb graphs easily dominates
the total computation time. For many events it is, how-
ever, rather straightforward how to adapt the level set
Reeb graph to reflect the level set component’s structure
above the event. Implementing the adaptation rules for
non-degenerate cases of event types @, @ and some cases
of type @, we can reduce the number of recomputed graphs
by about 90%.

As first example, consider events of type @, where two
Jacobi arcs swap their relative position with respect to g.
There are no changes if the swapped Jacobi arcs belong
to different level set components. Otherwise, the corre-
sponding vertices of the level set Reeb graph are swapped
in its ordered vertex list. Additionally, some incident arcs
are exchanged between the two vertices in case there is an
arc connecting them. This can only occur if both vertices
have valency three, see Figure 6 for typical examples.

X:E 9.9

Figure 6: Changes in an event of type @.

As second example, consider a local minimum of the
Jacobi set of type @. Here, an existing arc is split to at-
tach a new arc. To determine the split arc, we trace the
boundary curve to the next intersected Jacobi arc. Start-
ing from the corresponding vertex, we follow the level set
Reeb graph to the g level of the event point, see Figure 7.

T

Figure 7: Changes in local minimum of the Jacobi set of
type ®: The purple arc is split, and a new arc is attached.
The green arrow marks the searching route.

2.5 Further examples

We implemented the sketched algorithm for a piecewise
linear setup: The manifold is given as triangular surface
mesh and the piecewise linear approximations of the func-
tions are considered.

Figure 8: Considered test objects in Table 1: Stanford
bunny and Rolling stage- and Wooden chair model from
aimatshape shape repository.

For each of the three meshes in Figure 8, the layered
Reeb graph of the object and of its complement are com-
puted using six different combinations of the coordinate
functions. Of these in total 12 setups per object, we rep-
resent the smallest, the most complicated, and an inter-
mediate result in Table 1.

triangles events adapts time 1 time 2
Stanford 69 664 2669 2402 4.0s 0.4s
bunny 4030 2941 7.3s 1.7s
13265 12634 53.0s 2.8s
rolling 382242 3995 3766 18.6s 2.3s
stage 6 569 5583 16.8s 2.5s
63809 60756 376.3s 27.8s
wooden 408398 4697 4110 15.8s 2.2
chair 14222 12983 90.9s 9.6s
56593 53177 298.3s 21.3s

Table 1: Some results for three function setups per ob-
ject. Number of events, the number of events which can
be handled by an adaption rule, time for the brute force
algorithm and time for the adaptive algorithm.

3 Conclusion

After recalling the definition of the layered Reeb graph,
we outlined an efficient algorithm for its computation in
a piecewise linear setup. In contrast to the brute force
algorithm presented earlier, this algorithm adapts level set
Reeb graphs at events instead of recomputing them from
scratch.

References

[1] S. Biasotti, D. Giorgi, M. Spagnuolo, and B. Falcidieno.
Reeb graphs for shape analysis and applications. Theor.
Computer Science, 392(1-3):5-22, 2008.

[2] H. Doraiswamy and V. Natarajan. Efficient algorithms for
computing Reeb graphs. Computational Geometry, 42(6-
7):606-616, 2009.

[3] H. Edelsbrunner and J. Harer. Jacobi sets of multiple
Morse functions. Foundations of Computational Mathemat-
ics, Minneapolis 2002, pages 35—57, 2004.

[4] H. Edelsbrunner, J. Harer, and A. K. Patel. Reeb spaces of
piecewise linear mappings. In Proc. Sympos. on Comput.
Geom., pages 242-250. ACM, 2008.

[5] G. Patané, M. Spagnuolo, and B. Falcidieno. A minimal
contouring approach to the computation of the Reeb graph.
IEEE Transactions on Visualization and Computer Graph-
ics, 15(4):583-595, 2009.

[6] B. Strodthoff and B. Jiittler. Layered reeb graphs of a
spatial domain. In Booklet of Abstracts of EuroCG, pages
21-24, 2013.

[7] B. Strodthoff, M. Schifko, and B. Jiittler. Horizontal de-
composition of triangulated solids for the simulation of dip-
coating processes. Computer Aided Design, 43:1891-1901,
2011.

[8] J. Tierny, A. Gyulassy, E. Simon, and V. Pascucci. Loop
surgery for volumetric meshes: Reeb graphs reduced to con-
tour trees. IEEE Trans. on Visualization and Computer
Graphics, 15(6):1177-1184, 2009.

