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ABSTRACT. We consider the adaptive refinement of bivariate quar-
tic C%-smooth box-spline spaces on the three-directional (type-I)
grid G. The polynomial segments of these box splines belong to
a certain subspace of the space of quartic polynomials, which will
be called the space of special quartics. Given a finite sequence
(Gf)g:07,_,7 ~ of dyadically refined grids, we obtain a hierarchical
grid by selecting cells from each level such that their closure covers
the entire domain €2, which is a bounded subset of R2. A suitable
selection procedure allows to define a basis spanning a hierarchical
box spline space. As our main result, we derive a characteriza-
tion of this space. More precisely, under certain mild assumptions
on hierarchical grid, the hierarchical spline space is shown to con-
tain all C2-smooth functions whose restrictions to the cells of the
hierarchical grid are special quartic polynomials.

1. INTRODUCTION

Box splines and the functions contained in the spaces spanned by
them form a highly interesting class of piecewise polynomial functions,
which are defined on regular grids. A comprehensive introduction to
this topic is given in the monograph [3]. Box splines possess a number of
useful theoretical and practical properties that make them well-suited
for applications. It has been shown that

e Box splines have small support (the union of few cells of the
underlying grid),

e they are positive in the interior of its support, and

e box splines are refinable, i.e., the box spline spaces on (e.g.)
dyadically refined grids are nested [1,1].

Moreover, a substantial number of results on the approximation power
of box splines is described in the literature, e.g. [11,14].

In this paper we shall restrict ourselves to the case of C%-smooth
quartic box-splines on a type-I triangulation of R?, cf. Fig. 1. These

functions form the mathematical basis of Loop’s subdivision scheme
1
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and are therefore used to construct the regular parts of the correspond-
ing subdivision surfaces, cf. [10,15].

On each triangular cell, the space generated by these basis functions
spans a 12-dimensional subspace of the space of quartic bivariate poly-
nomials. This subspace, which will be called the space of special quar-
tics, is known to contain the cubic polynomials. Moreover, it is known
that any locally supported function in the underlying spline space can
be represented as a linear combination of these box splines [2].

Local refinement of box spline spaces is not automatically supported,
hence a hierarchical approach should be used to obtain this property.
Several recent publications explore box splines in a hierarchical set-
ting. In [7] quadratic and cubic hierarchical box splines are studied,
and applied to surface fitting and for the numerical solution of partial
differential equations. Hierarchical ZP elements were also studied in
[16].

In the present paper we consider the adaptive refinement of bivariate
quartic C?-smooth box-spline spaces on the three-directional (type-I)
grid G. More precisely, given a finite sequence (G)—o. .y of dyadically
refined grids, we obtain a hierarchical grid by selecting cells from each
level such that their closure covers the entire domain €2, which is a
bounded subset of R%.  Using a suitable selection procedure, which
generalizes the hierarchical B-spline basis introduced by Kraft [3] to
quartic C? box splines, we define a basis spanning a hierarchical box
spline space. As our main result, we characterize the span of this space
as the space containing all C2-smooth functions whose restrictions to
the cells of the hierarchical grid are special quartic polynomials. Our
derivations are based on the approach in [13], which has been modified
suitably to deal with the box spline case.

2. PRELIMINARIES

2.1. Bivariate splines on regular grids. We consider bivariate splines
on a three-directional grid in the plane R?, see Fig. 1. Let us denote
by P, the linear space of polynomials in R[z,y| of bidegree less than
or equal to d.

We consider a partition G of a polygonal domain  C R? into
mutually disjoint cells, where each cell is an open set and the closure
of the union of all cells equals 2. In addition we choose a linear space
T of functions on R2. A typical choice would be T = P4, but other
choices are also possible.

Let S"(Gq,T) be the space of C” splines is defined on Gg,

S"(Gq,T)={s € C"(Q) : s|p € T|a for all cells A € Gq}.
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This definition is quite general and applies to any partition of any
planar domain in R?. Throughout this paper, we consider a special
triangulation which allows to construct splines with particularly nice
properties.

More precisely, we consider the bi-infinite grid in R? with lines R x Z
and Z X R and the triangulation obtained by adding the north-east
diagonals in the squares of the bi-infinite grid, see Fig. 1. This produces
a three-directional grid which we denote by G. The grid G is a set
which contains the elementary triangles (which are called cells) as its
clements, where cach of the triangles is considered as an open subset
of R?.

This type of grid is called called a type-I triangulation in the liter-
ature [9]. The spline spaces on triangulations of this type have been
studied thoroughly in the rich literature on this subject. In particu-
lar, they include box-spline spaces, which are interesting due to their
elegant construction and simple refinement algorithm.

All results concerning splines on type-I triangulation remain valid
under affine transformations of the underlying grid G. For instance,
these transformations include scalings of the grid (and we will use this
fact later when constructing hierarchical spline spaces), but also affine
mappings that transform all triangles into equilateral ones, which re-
veals the built-in symmetries of these spline spaces.

F1GURE 1. Three-directional grid G.

2.2. Quartic box splines. We restrict ourselves to polynomials P, of
degree up to four and we will denote this space simply by P. For each
triangle A € G, let us denote by P|a the linear space formed by the
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restrictions f|a of the polynomials f € P to A, i.e.,
Pla={fla:feP}

For a given triangle A\, any bivariate polynomial can be represented as
a linear combination of the associated bivariate Bernstein polynomials
on this triangle [9],

X

(1) flA = CijkB;ljk-

i+j+k=4
with real coefficients c;;;,. Fach Bernstein polynomial ijk has an as-
sociated Greville point, which possesses the barycentric coordinates
(i/4,7/4, k/4) with respect to the triangle. This representation of the
polynomials is quite useful for the efficient evaluation of the functions
and their derivatives at a given point.

The coefficients in Fig. 2, which are placed at the Greville points,
define a piecewise polynomial function, whose support is the set of
these triangles. The multiple 1/24 of this function is the special box
spline N3 2 5 on the three-direction grid. It has polynomial degree 4 and
is C? smooth. This box spline is our main object of interest and will
be denoted by B. Note that this box spline forms the mathematical
basis of Loop subdivision surfaces [10, 15].
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FIGURE 2. Support and the Bernstein coefficients of the
scaled box spline 248. The central vertex is located at
the origin.

The translates
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are known to form a locally linearly independent set
(2) B={B; : (i,j) € Z*}.
in the following sense: for any open set A, the translates

By = {Bi; € B :supp (B;) N A# 0}

restricted to A are linearly independent [9]. Here supp (f) denotes the
support of the function f.

2.3. Contact of polynomial pieces. By construction, each function
f;; is associated with the lattice point (4, ). For a cell A in G, let
A denote the closure of A. We consider the translates whose support
contains the given cell A,

Ba = {8 - supp (Bi;) N & # 0}

This set is formed by the 12 translates j3;;, which are associated with
the vertices of the 1-ring neighborhood of A in the three directional
grid, see Fig. 3.
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FI1GURE 3. The 1-ring of a triangle.

We now consider the linear space spanned by the restrictions of these
translates to the given triangle,

(3) VA = (span Ba)|a.

Since this space is a subset of the space of quartic polynomials (since
its dimension is 12 only), we will call it the space of special quartics
on A.
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Remark 1. It can be shown that Vo = P|, where
P = span (Ps U {z* — 223y, y* — 223°}).

In particular, it should be noted that P is independent of the chosen
cell A. The proof of this observation is postponed to the Appendix. ¢

Any polynomial f|o € VA has a unique representation
X
fla) = = NA(fla) B(x). x €A,

BE€BA
with certain coefficients A3 (f]») € R.
Now we consider two cells A and /A" which share an edge. The 1-
rings around A and A’ have 10 vertices in common, and hence Ba,
and B share 10 elements, see Fig. 4.
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FIGURE 4. Active box splines on a square domain con-
sisting of two triangles. Twelve functions are active (non-
zero) on each triangle. Exactly ten of those are active on
both triangles.

The following notion of contact will be important in the sequel for
the definition of spline spaces.

Definition 2. We say that two polynomials f|o € Pa and f'|a” € Pa’
have contact of order 2 (and write f|a ~ f/|o), if

g giti
for all 2 and j with 0 < ¢+ 7 < 2. The derivatives and values at points
on a triangle boundary are obtained by one-sided limits.
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Lemma 3 (Contact Characterization Lemma (CCL)). Let f|n € VA
and f'|p € Vo on two digoint trianges A, A/, and assume that the
two triangles have a common edge e = A N A’. Then the two polyno-
mials f|~ and f’|»- have a contact of order 2 if and only if

VBEB: Bl #0l. = M(fla) = Mo (f']a).

Proof. Let A = (v1,v9,v3) and A" = (v4,v3,v3) be two triangles in G
sharing the edge e = (v, v3). The two polynomials f|a and f’'|o have
C? contact on the edge e if and only if their Bernstein coefficients c;jp,
and cgjk with respect to the triangles A\, and /\’ respectively, satisfy
the conditions
X j+k=4—n
5 .= c B (v4)
( ) njk S vk+p,j+kE u;m( 4) n=0,12.
This establishes 12 conditions on the coefficients ¢;;;, and c;jk, of fla
and f/‘ A
On the other hand, since f|n € VA and f'|o € Vo, then f|a and

f'|a can be expressed as

X2 X2

fla=" XA(fla)Bila and fla =" MN2(fla)Bla

i=1 i=1
where f3; and ] run over the active box splines in A or A’, respec-
tively. The restriction of the translates of the box spline f;|o and S/|a’
can be written as linear combinations of the Bernstein bases B” _and

VUK

B}, associated to the triangles A and A, respectively. This yields

an expression of f|a and f’|5' as linear combinations of the respective
Bernstein basis and whose coefficients c;jx, and ¢j;; are linear combina-

tions in the )\ﬁ and \’ i =1,...,12, respectively. These coefficients
must satisfy the relations (5). Solving the system yields the conditions
stated in the lemma. O

3. SPECIAL QUARTIC SPLINES ON MULTI-CELL DOMAINS

3.1. Piecewise polynomial functions on triangular domains. In
the three-directional grid G, we will consider finite set of cells (trian-
gles) M C G. Any such set M corresponds to a bounded domain

[ [
L

(6) M= A= MCR

AeM
If the domain M is connected, then we will say that the set M of
triangles is also connected. We need a stronger version of connectivity
which excludes vertex-vertex contacts of triangles.
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Definition 4. A set M of triangles is said to be x-connected if it
is connected and if additionally for any two triangles A, A" in M,
which have a common vertex v, A N A" D {v}, there is a chain of
triangles Ao, Aq,..., A, all in M such that Ay = A, A,, = A\ and
N ﬂAiH = ¢; for some edge e; € M that contains the vertex v, v € e,
fori=0,...,m—1.

In particular, two triangles are x-connected triangles if they possess
a common edge.
We require the following condition.

Condition 5. The set M of triangles is assumed to be a union of
finitely many mutually disconnected finite sets of triangles, each of
which is x-connected.

In particular, this condition on the set of triangles M implies that we
do not allow “kissing vertices” in any connected component of M; or
in other words, M is a triangulation of a 2-manifold M with boundary.

Example 6. The domain M = S M in Fig. 5 has only one component
and it is not x-connected. In Fig. 6, the set of triangles M is modi-
fied in several ways by adding and deleting triangles and the different
components (when more than one) are all x-connected, and hence the
domains satisfy Condition 5. o

F1GURE 5. Example of a set M which is connected but
not x-connected.

In the remainder of the paper, every set M is assumed to satisfy
Condition 5. The set of the translates of box splines that act on the
triangles M will be denoted as

By = {Bi; € B : supp fi; N M° # 0},
where M° denotes the interior of M, see Fig. 7 for an example. These
basis functions generate a space which we denote by

(7) V= span BM|M~
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Examples of sets M satisfying Condition 5.

FIGURE 6.
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Definition 7. For a finite set of triangles M C G let
n o

DMZ{(f|A)AEM : f|A EP|A} , and D]\,{z (flA)AEM : f|A Eﬁ|A ,

be the spaces of disconnected quartics and disconnected special quartics
on M, respectively.

For M = {A}, the spaces D), and D ar coincide with Pl and with
75| A. It is obvious that D v C Dy for any choice of M.

Given a disconnected special quartic £ = (f|a)aem € Dy, we have
a local representation X

fla) =" MA(fla)Blax), x € A,
BeB

in terms of the restriction of the box splines, for any A € M. However,
this representation is generally not available for general disconnected
quartics.

Definition 8. For a finite set of triangles M, and the corresponding
disconnected space Dy, the special spline space on M is defined by

S]W = {fe]f))M : VAvA/ € M? f’A Nf|A}
where the relation ~ is defined in Definition 2.

As we shall see later, the special spline space Sy can be generated
by box splines with support on M, but one may need to make several
copies of some of these box splines, as shown in the following Example.

Example 9. The domain in Fig. 8 consists of two x-disconnected tri-
angles. The space of disconnected special quartics consists of pairs of
special polynomials, where the first and the second entry of each pair
is associated with the first and the second triangle. Since the two tri-
angles are disconnected, the special spline space is equal to the space of
disconnected special quartics. Consequently, it has dimension 24 and
is therefore not spanned by the 18 box splines whose support intersects
this domain. o

Any £ = (f|a)nem € S,s defines a unique continuous function f on
M, with the property that

f(x) = fla(x) for every x € A and A € M.

Using the representation of f as an element in Dy, and the characteristic
functions y, of the cells A € M, we may also write f as

X X X
f(x) = An(fla)Bx)xi(x),  for x € M

AEM BEBA
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e
A
FiGURE 8. Domain with V,; C SM
where .
*
X
Hp e e

(8) Xa(x) = : cenr Xe(X)

0, otherwise.

We will use the same notation f for the elements of SM which are
|M|-tuples of polynomials (where |M] is the number of triangles in
M), and the actual spline functions f. Consequently, we identify the
special spline space Sy; with the space S2(M, 75), ie.,

9) Sy = S2(M, P).

Clearly, this space is a subset of the full quartic spline space S%(M, P).
Definition 10. For a spline 8 € B, the coeffi cient graph I's associ-
ated to [ is defined as follows:

e The vertices of the graph I's are the cells A € M such that
A C supp f.

e Two vertices of I' are connected by an edge if the corresponding
cells A, A’ have a common edge and 5|zqa # 0| Ana -

We will write A € I'g to indicate that A corresponds to a vertex of I's.

Example 11. Let us consider the domain in Fig. 9, and the box splines
Bi (i = 1,2,3). The corresponding coeflicient graphs I's are given in
Fig. 10. o

Proposition 12. An element f € Dy is in S, if and only if the
coeffi cients satisfy A2 (f|a) = A2 (f|a'), for all g € By, and all pair
of cells A, A’ belonging to the same component of I's.

Proof. Suppose f € SM, and §in B. If A = Ag and A" = Ay, are
two cells in M corresponding to vertices in the same component of
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FIGURE 9. Triangular domain, and three examples of

box splines ;.

Graph T'g,

FiGure 10. Coefficient graphs associated to [;, i =

1,2, 3 from Fig. 9.

Graph T'g,

Graph I's,

.,vq in I'g corresponding to
., Agin M, such that A\; and A, intersect in an edge, for

I's, then there is a chain of vertices vy, ..

cells A\q, ..

pe

(fla) = )\im(ﬂAm), and since this is

A
, then the same follows for A and A/.

Conversely, from a similar argument as before, if for any pair of
triangles A and A’ in M having an edge e in common we have that

)

.,d. By Lemma 3

i=0,..

<i<d

valid for every 0

AN (f]a) = Mo (f| ) for every basis function 3 € B such that |, # 0,
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then by Lemma 3 every linear combination of the basis functions g is
inS M- 0

3.2. Box spline bases on triangular domains.

Definition 13. For every g € B and every connected component &
of I's we define the function

X
Ba(x) = BE)XI(x),
ced
where y%(x) is defined as in (8). The set of these functions, for the
different connected components of the graph I's, is denoted by A i.e.,

[
A= {Bs| ® is a connected component of I'z}.

BeB

Theorem 14. The set A, when restricted to M, forms a locally linearly
independent basis for S,,.

Q

The proof is analogous to that of Theorem 2.12 in [13].

Corollary 15. If the intersection of the support of each g with the
multi-cell domain M is *-oonnec:[ed, then the functions in B;;, when
restricted to M, form a basis of S,,.

Proof. If this condition is satisfied, then for each § € B); the coefficient
graph I's has either one component or it is empty, and the result follows
from the theorem. 0

Example 16. The graph I'g, associated to every [ with no empty
intersection with the interior of M in Fig. 7, has only one compo-
nent. From the previous corollary, it follows that the functions in B,
restricted to M, form a basis for the special spline space Sy on the
domain M. o

4. CHARACTERIZATION OF ADMISSIBLE DOMAINS

S .
Definition 17. A domain M = ~ M is said to be admissible, if the
intersection of the support of any box-spline with M is *-connected.

The following result is then obvious from Corollary 15:

Corollary 18. For any admissible dgmain M, the functions in By,
when restricted to M form a basis of S;,.

A subset of admissible domains can be characterized by the offsets
of their boundaries.



14 N. VILLAMIZAR, A. MANTZAFLARIS, AND B. JUTTLER

Definition 19. We define the offset curve of a multi-cell domain M as
follows: consider any cell (triangle) in G'\ M. If the boundary of this
triangle shares a vertex with M., but both incident edges are not part
of the boundary of M, then the opposite edge is added to the offset
curve. We say that a domain M satisfies the offset condition (OC), if
its offset is a simple closed curve or a collection of simple closed curves.

Proposition 20. |f a domain satisfies the offset condition, then it is
also admissible.

Proof. The proof follows from a careful case-by-case analysis. 0

FIGURE 11. Offset curves.

Remark 21. For the domain on the left in Fig. 11 the box splines in
By form a basis for SM. In this situation, when the holes in the do-
main are “suffi ciently small”, they do not split the domain of any basis
function 8 € By, and the result follows by Corollary 15. Consequently,
the offset condition is sufficient, but not necessary, for admissibility. ¢

5. HIERARCHICAL BOX SPLINES

In this section we define hierarchical box spline and we prove the
completeness of the hierarchical construction, i.e. the fact that the
hierarchical basis spans locally P* and has C? continuity along the
edges of the hierarchical mesh.

5.1. Hierarchies of box spline spaces. Let N > 0 be an integer,
and consider the grids

G, (=0,...,N—1
such that G*! is obtained from G* by one global, uniform dyadic
refinement step. By dyadic refinement we mean that every triangle-

edge of G is divided into two edges, and the new edges are added,
thus every triangle is split into four smaller ones, see Fig. 12.
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FIGURE 12. Hierarchical grids.

The corresponding spline functions B define the spline spaces V¢ =
span BY. Since the grids are nested, the respective spaces are also
nested, i.e.

vVicvHt L r=0,...,N—1.

We are going to construct a hierarchical spline space over these
nested grids. To this end, the following definition is convenient:
Definition 22. For a real subdomain M € R?, we define

T'M) ={A G : AT M},

and for a set of triangles M* C G the union operation
[ [
M= ACR?.
AeMt

Using this notation, we can distinguish between a set of triangles,
and the real sub-domain occupied by these triangles.

Let Q be a domain of R? aligned with level N — 1. That is, 9Q is a
union of edges from the grid GV 1.

Now, let us start with an inversed nested sequence of domains M,

MOngg..gMN—l

with OM* C G, for £ =0,...,N—1, and let M* = T*(M), see Figures
13 and 14. We denote @ = MY~ (since it needs to be aligned with
level N —1). These sets are called rings in [5].

We assume that for each ¢, the multi-cell domains M* satisfy Con-
dition 5. i.e., all the components of M’ are x-connected. Then, the
box-splines in B’ whose support has a no empty intersection with M?*
form a (locally linearly independent) basis of Surt. according to Theo-
rem 14.
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The difference of two successive multi-cell domains M 1 and MY is

called refinement area of level ¢, formally
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so that €2 is regarded as a disjoint partition of cells of different levels,
containing exactly the cells D’ from grid G, and M? is written as

[6

=0

(10) M= TYD".
In particular we have D = MY, see Fig. 13.

We shall introduce a hierarchy of spline spaces defined on these do-
mains. For each level £, we consider the spline space S;;t, so that

Ve C Sy

The spaces vaﬂ and Sﬁ/ﬂ are defined as in Eq. (7) and Definition 8,
but using the spline space and the grid of level /.
Given a multi-cell domain D’ C G*, we have again the inclusion

Vi € S3Dy) , £=0,...,N—1.
We are now able to define the spline space we are interested in

Definition 23. The hierarchical special spline space H is defined as
!
-1 :
H=s? | D' P
=0

Each cell of D is also contained in M’, and on the other hand,
each cell of M is contained in a cell of some D* for k < £, cf. (10).
Consequently, we can characterize the space H equivalently as

n .o
H= h:Q>R|Vl: hlyeecSi ,

since, by (9), we have that

(11) St = SHME, P).

Note that this is more general than requiring h|ye € V¢ . In fact,
the space H contains any C?-smooth function with the property that
its restriction to any cell in the hierarchical grid is a special quartic
polynomial. This is expressed by requiring that the restriction of such
a function to the multi-cell domain M? belongs to the special spline
space on M*. In contrast, the space Vfw contains only those functions
that can be represented as linear combinations of restrictions of box
splines to M.
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5.2. The box spline basis of hierarchical special splines. Finally
we formulate the main result of our paper.

Proposition 24. |f each multi-cell domain M/‘ is admissible for every
(=0,...,N —1, then the functions in

-1
K= 1 Kt
=0
forms a basis for the space of hierarchical box splines H, where

n 0
Kt = ﬁeerLﬂ |supp60/\/l"z_1 =0 .

Proof. The proof follows standard arguments already presented in [5,
13], for the tensor B-spline basis. First we verify that K is linearly
independent. This is deduced from the fact that every K is locally
linearly independent, from the properties of quartic box splines.

Let h € H, by the definition of the hierarchical space, there exists
h' = h|ye € Sf\/ﬂ, which implies A’ € span K, by Corollary 15. We
obtain

X1
Wl =h—" N
i=0
leading to h = h*+1*, where the residual 7’ has the property 7¢| v = 0.
Considering this argument for all £ =1,..., N — 1, we arrive at
-1
h=h+r0=n"+nt+r=... = nt+r,
i=0
where the residual function is
-1
r= rt.
=0
Since the M’ are inversly nested,
r=rlg=r""yn-1 =0,
so that h € IC, as needed. O

6. CONCLUSION

We extended the discussion of the completeness of hierarchical spline
spaces from [13] to the case of hierarchies of bivariate quartic C*-
smooth box splines on type-I tria tringulations. There two main differ-
ences to the original approach, which was formulated for tensor-product
splines.

First, since box splines do not span the whole space of quartic poly-
nomials, a special polynomial subspace — the special quartics — had to
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be introduced. In some sense this is even similar to the tensor-product
case, where the B-splines span a tensor-product space instead of the
the space of polynomials of a given degree.

Second, the constraints on the domains are entirely different, due
to the differences in the characterization of contacts between polyno-
mial pieces. For bivariate tensor-product splines, both edge-edge and
vertex-vertex contacts could be characterized easily by the equality of
spline coefficients. In the present case, however, this was possibly solely
for edge-edge contacts. Consequently, the completeness of hierarchical
splines requires more severe restrictions to the hierarchical grid.

The hierarchical box-spline basis does not form a partition of unity.
Similar to the approach presented in [0], this property can be recovered
with the help of a suitable truncation procedure. Also, [13] described
a decoupling procedure that allows to relax the assumptions regarding
the hierarchical grid. This approach can be extended to the box spline
case as well. Finally it is also possible to combine truncation and
decoupling as in [12].

APPENDIX I

We show that the space V. defined in Eq. (3) is the restriction of a
global space to the triangle, as pointed out in Remark 1.
The following proof is not restricted to quartic box-splines.

Proposition 25. Consider a global polynomial f € P defined in R
If flo € VA for some A € GY, then f|» € VA for any other cell A’
in the grid G*.

Proof. Suppose that A, A’ € G¢ and that both A and A’ are contained
in a bigger triangle A of a grid which we denote as G°. We denote by
VO the span of the box splines (associated to the grid G°) restricted
to A. In this way, A and A’ are obtained from A after ¢ successive
refinement steps. Consequently, VA = V4, and Vo = Vi

Let VO|o be the space of polynomials in VO restricted to the cell
A. Tt is clear that dim V° = dim V%, by definition of the box spline
space. On the other hand, notice that by the refinement procedure
VO A C V4. Hence, V|0 = V4.

Similarly, taking the restriction V°| o', we can see that locally V9| =
Vi . Therefore, flo € Va'. a

We may therefore define P to be this global polynomial space. In
the special case of C? quartic box splines, the above result may be
seen directly by using the representation of the polynomial pieces in
the monomial basis.
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More precisely, from the local coefficients of the quartic box splines,
we can find a basis for P expressed in the monomial form as:

P = span (P3 U {z* — 223y, y* — 221°)).

Remark 26. We can use this basis of P to make a proof of Proposi-
tion 25 for the particular case of C? quartic box splines as follows.

With the notation as in Proposition 25, by a change of coordinates
we can assume that A has a vertex at (0,0). Since f € V, then

flz,y) = f(z,y) + (@t — 22%) + eo(y* — 229°%)

where f € Ps3 and ¢, ¢y are the coefficients of the degree four part.
Since A’ is a translation of A, then by the change of coordinates x =
2 +a,y =y + b where (a,b) is a vertex of A\, it is enough to show
that f in this new coordinate system belongs to VA . Indeed,

f@ ) = fx+a,y+b) = f(@, ) +er (@™ =22y ) + oo (y* —22y)

where f’ is a cubic polynomial. o
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