
Isogeometric Segmentation: Construction of auxiliary curves

Dang-Manh Nguyen, Michael Pauley, Bert Jüttler

Institute of Applied Geometry, Johannes Kepler University, Faculty of Natural Sciences and Engineering, Altenberger Straße 69, A-4040
Linz, Austria

Abstract

In the context of segmenting a boundary represented solid into topological hexahedra suitable for isogeometric analysis, it
is often necessary to split an existing face by constructing auxiliary curves. We consider solids represented as a collection
of trimmed spline surfaces, and design a curve which can split the domain of a trimmed surface into two pieces satisfying
the following criteria: the curve must not intersect the boundary of the original domain, it must not intersect itself, the
two resulting pieces should have good shape, and the endpoints and the tangents of the curve at the endpoints must be
equal to specified values.

1. Introduction

Motivated by the problem of segmenting a solid into
pieces suitable for isogeometric analysis (see [2]), we de-
velop a method for segmenting a trimmed surface by con-
structing a cutting curve. We consider a boundary repre-
sented solid to be a collection of trimmed NURBS surfaces,
together with incidence information. A trimmed surface
consists of (i) a tensor product NURBS map [0, 1]2 → R3

defining the master surface; (ii) a trimmed domain, a sub-
set of [0, 1]2 which itself is represented by a collection of
NURBS curves defining its boundary. The surface itself
is the image of the restriction of the master spline to the
trimmed domain.

In [5, 12] we initiated the development of a method
for isogeometric segmentation, that is, the segmentation
of a contractible boundary represented solid into bound-
ary represented topological hexahedra (sufficiently smooth
images of cubes). In order to be suitable for isogeomet-
ric analysis, the number of topological hexahedra in the
segmentation should be small and it should be possible to
convert each of them into a volumetric spline with no sin-
gularities and ideally not too much distortion. (Conversion
of boundary represented topological hexahedra into volu-
metric splines can be done, using, for example, the method
of [20].) The idea of the method of [5, 12] is as follows:

• Search the edge graph of the solid (the graph formed
by the edges shared by trimmed surfaces) for a cut-
ting loop: a closed curve in the boundary of the solid
which can be used as the boundary of a surface that
splits the solid into two simpler solids (see Figure 3).
If multiple cutting loops are found, choose the best
one according to a combination of combinatorial and
geometric criteria.

• By recursively splitting the solid into simpler pieces,
we end up with a collection of base solids (topological

hexahedra, tetrahedra and prisms) which have prede-
fined segmentations into topological hexahedra.

In [5, 12] the search for a cutting loop is “combinatorial” in
the sense that it only results in a description of the list of
faces, edges and vertices the closed curve passes through.
The cutting loop generally consists of a combination of
edges already existing in the solid’s edge graph, as well as
new auxiliary edges that need to be added to split some
faces into two. When the solid is split, each face that the
curve passes through will be split into two. These two
pieces should have “good shape”, and the purpose of this
paper is to propose a way of measuring “good shape” and
a method of constructing curves which can achieve it.

Figure 1: An example of a planar
domain (with boundary given by the
black curve) and a splitting curve (red
dashed curve). The curve is required
to meet the domain at specified end-
points with specified tangent vectors,
and split the domain into two pieces
with reasonable shape.

Our problem is to split a planar domain in two, using a
spline curve with the following properties: (i) end points
and tangents are specified, (ii) the curve is reasonably reg-
ular, and (iii) the curve cuts a simply connected domain
into two pieces with good shape.

An example, of somewhat exaggerated difficulty, is given
in Figure 1. A domain is shown together with the required
tangent vectors at the endpoints. A curve is shown which
splits the domain into two pieces and meets the endpoints
in the specified directions.

For a complicated domain, it may be easy to split the
domain into 2 or more pieces with simple cuts that ig-
nore the endpoint requirements. For example, the snake
in Figure 1 might be cut into any number of pieces with

straight or nearly straight lines transversal to the snake’s
body. Alternatively, the domain might be approximated
by a quad mesh. These approaches are more appropriate
than ours for segmenting a 2D object without restrictions.
However, in order to realize the cutting loop that is cen-
tral to the 3D segmentation algorithm outlined above, we
must construct a curve that meets the specified end points
with specified tangents.

The basic idea of our procedure is as follows. We define
a cost function on the space of curves, which consists of a
measurement of how close the curve comes to intersecting
the domain, how close it comes to intersecting itself and
a regularity term. An initial curve is found for this opti-
mization problem by first finding a piecewise linear curve
inside the domain satisfying the endpoint conditions, refin-
ing it and using the vertices as control points for a degree
2 B-spline.

It is important that the resulting curves are non-self-
intersecting. In this sense, our problem is related to the
problem of self-intersection elimination in curves and sur-
faces, studied in [15, 17, 3]

Several other approaches to the solution are possible.
We might treat the problem as a path planning problem
with obstacles (for overviews of this large topic in robotic
control, see for example [7] and [8, Part IV]). Path plan-
ning using curves of piecewise constant curvature is stud-
ied in [4, 1] among other papers. Curves with continuous
piecewise linear curvature were proposed in [6] for inter-
polating between postures, and used in [18] to produce a
local path planner (these are not polynomial splines). Path
planning with B-splines is studied in e.g., [19, 11, 10, 9].
Our problem differs from path planning problems in sev-
eral ways. The constructed curve must have endpoints on
the boundary of the domain, and elsewhere must not in-
tersect the boundary. The curve cuts the domain into two
pieces, and it is the shape of these pieces that is important.
Path planning methods are not designed to produce a well
shaped splitting of the domain. Many path planning meth-
ods seek a curve in a configuration space. Our curves do
not represent the trajectory of a rigid body. Also, simplic-
ity of the resulting B-spline curve (in terms of the degree
and number of knots) is important.

We considered the following approach to splitting the
domain: map the domain to a convex shape (say, a circle)
using mean value coordinates (MVC) or harmonic func-
tions. It is easy to produce a B-spline curve connecting
points on the boundary, and, by sampling the curve and
using a predictor-corrector method, we can construct its
preimage in the original domain. This approach is plau-
sible but in our experience, several difficulties arise from
this approach: (i) the outcome is a sampled curve, and a
fitting step must be included to convert the samples into a
B-spline. It is difficult to tell how many samples are needed
to ensure that the fitted B-spline stays within the domain;
(ii) using the boundary element method to compute MVC
or harmonic functions is numerically challenging near the
boundary of the domain; (iii) the quality of the result is de-

Solid Simple method Our method

Figure 2: One of the alternative approaches we considered, outlined
in Section 1, is based on cutting the domain with line segments and is
unaware of the boundary except at the points where the line segments
intersect it. As a result it can sometimes create badly shaped pieces.
The method of this paper is not susceptible to this problem.

pendent on how the curve is chosen in the convex domain,
and it is not clear how to make a good choice.

Another approach we considered is to fit a spline curve
to a polygonal path which is found using a pathfinding
method that stays away from the domain boundary ∂Ω as
follows: draw a line segment beginning at one of the end
points in the initial specified direction, and ending at the
first intersection point y that the line has with ∂Ω. This di-
vides the domain into two pieces. Discard the piece which
does not contain the other endpoint. The first half of the
line segment is included in the polygonal path, the mid-
point of the line segment is set as the new starting point,
and a new initial direction is chosen which is parallel to
the tangent direction of ∂Ω at y. Repeat the procedure
until there is a line segment directly to the remaining end-
point. This procedure produces a curve fairly quickly but
in certain scenarios can result in unnecessarily thin shapes
as shown in Figure 2.

In Section 2 we give precise statements of our assump-
tions and goals and describe our construction method.
Section 3 describes our method for constructing an initial
curve. In Section 4 we formulate the optimization prob-
lem which we use to find a suitable splitting curve, and
outline our strategy for solving the optimization problem.
Section 5 provides examples of varying difficulty, and in
Section 6 we summarize how our work fits in to the iso-
geometric segmentation problem and describe the outlook
and future work. Appendix A and Appendix B prove
regularity properties of the penalty functions, and in Ap-
pendix C we provide a method for efficiently computing
them.

2. Preliminaries

2.1. The trimmed surface splitting problem

For context, we briefly outline the strategy described in
[5, 12] for segmenting a solid. For our purposes, a solid is
represented by a collection of trimmed surfaces, together
with incidence information. We assume that the solid is

2

Figure 3: Left: an example of a boundary represented solid. Based
on the methods of [5, 12], a segmentation of the solid into topological
hexahedra was given in [14] and shown to be suitable for isogeometric
analysis. For the examples of that paper, a preliminary version of
the present paper’s method was used to produce the auxiliary curves.
Right: the solid is split into two simpler solids. Two auxiliary edges
need to be constructed to make this segmentation.

contractible and that the edges form a simple, 3-vertex-
connected edge graph. The edges of the graph are inci-
dences between two faces. An auxiliary edge can be con-
structed between any two vertices that are on the same
face but not on the same edge. A cutting loop is a cycle
consisting of existing edges and auxiliary edges. The cut-
ting loop can be used to split the edge graph into two, and
the cutting loop is valid if it can be used as the bound-
ary of a surface which splits the solid into two pieces, each
satisfying the original assumptions. A valid cutting loop
always exists, with the provision that under some circum-
stances, additional auxiliary vertices may need to be added
to the graph. Repeatedly splitting the solid into two sim-
pler pieces using cutting loops, we eventually arrive at a
collection of base solids which have predefined segmenta-
tions into topological hexahedra. Examples of a single step
of the solid segmentation method are shown in Figures 2
and 3. In each of these examples, two existing edges and
two newly created auxiliary edges are used to form a cut-
ting loop.

There are geometric conditions on the validity of a cut-
ting loop which place constraints on the sequence of edges.
Once these constraints are known, the search for a good
cutting loop becomes a combinatorial problem. However,
once the loop is chosen, each auxiliary edge needs to be
realized geometrically. In other words, for each auxiliary
edge in the cutting loop, we need to solve the following
problem.

Problem 1 (Trimmed surface splitting problem). Find a
spline curve of the trimmed domain, so that the trimmed
surface is split into two new trimmed surfaces with rea-
sonably good shapes.

Due to the geometric conditions for a valid cutting loop,
a solution to the trimmed surface splitting problem must
be able to handle specified tangent directions at the end-
points.

2.2. The domain splitting problem

We now focus on the domain splitting problem, the part
of the trimmed surface splitting problem that does not
take consideration of the way the surface is embedded.

Consider a simply connected domain Ω ⊂ R2 with con-
nected interior. We restrict our consideration to the case
where the boundary ∂Ω of Ω is formed by spline curves
[16]. Suppose two points A and B on the boundary of Ω
are given, along with two nonzero vectors α and β that
point from A and B to the domain interior respectively.
Without losing generality, we assume that the boundary
∂Ω consists of two spline curves b(v) and b̃(v), v ∈ [0, 1],

so that b(0) ≡ b̃(0) ≡ A, b(1) ≡ b̃(1) ≡ B. The notations
are illustrated in Figure 4.

A

α

B
β

b̃(v)

b(v)

Figure 4: A simply connected snake-shaped domain enclosed by two
spline curves b(v) and b̃(v). A splitting curve of the domain is shown
(red).

Additionally, we narrow our consideration to the situa-
tion specified by the following assumptions.

(A-1) The two curves b(v) and b̃(v) have non-vanishing tan-
gents at their end points.

(A-2) Domain Ω has non-zero interior angles at A and B;
the prescribed velocity direction α is not tangent to
any of the boundary curves at A; likewise, β is not
tangent to any of the boundary curves at B.

Throughout the remainder of the paper, we shall often
associate discussions with the curve b(v) while referring

to b̃(v) as a similar case. Assume that the curve b(v) is

of the form b(v) =
n∑
j=1

bjNj(v), where Nj are B-splines

of degree q and associated with an open knot vector V =
{0, . . . , 0 = v1, v2, . . . , vn−1, vn = 1, . . . , 1} (the first knot
and the last knot are repeated q + 1 times), and bj ∈ R2

are associated control points.
Consider a spline curve c(u) of the form

c(u) =

m∑
i=1

ciMi(u), (1)

where Mi are B-splines of a degree p and associated with
an open knot vector

U = {0, . . . , 0 = u1, u2, . . . , um−1, um = 1, . . . , 1} (2)

(again, the first and the last knots are repeated p+1 times),
and ci ∈ R2 are control points. The following definition
will facilitate our discussions in the remainder of the paper.

Definition 1. A continuous spline curve c(u), u ∈ [0, 1],
is said to be a splitting curve of the domain Ω if it satisfies
the following conditions.

3

(C-1) The curve c starts at A tangentially to α and ends
at B tangentially to β. That is,

c(0) = A, c(1) = B,

det[c′(0),α] = 0, det[c′(1),β] = 0.
(3)

(C-2) We divide this condition into the following 3 sub-
conditions.

(i) c is simple over [0, 1], i.e., c(u) 6= c(v) for all
u 6= v.

(ii) c′+(u) 6= 0 for 0 ≤ u < 1, and c′−(u) 6= 0 for all
0 < u ≤ 1.

(iii) For all 0 < u < 1 and β > 0, c′+(u) 6= −βc′−(u).

(C-3) The curve c(u) is contained in the interior of the do-
main Ω except its two end points. That is, {c(u), 0 <
u < 1} ⊂ int(Ω).

It immediately follows from the definition that a split-
ting curve of a simply connected domain decomposes the
domain into two new simply connected domains.

We can now state our domain splitting problem, which
differs from the trimmed surface splitting problem by not
considering the embedding in R3.

Problem 2 (Domain splitting problem). Find a splitting
spline curve c(u), u ∈ [0, 1], of the domain Ω such that it
has few control points and it splits Ω into two new simply
connected domains with reasonably good shapes

In Problems 1 and 2, a curve with “good shape” would
stay far away from intersecting itself or the domain bound-
ary, and would also be quite regular. Thus the measure-
ment of the quality of shape is based on a combination of
penalty functions, which we define in Section 4.

We solve this problem using the algorithm outlined in
the next section.

2.3. Outline of the algorithm

Consider the domain Ω and the domain splitting prob-
lem stated in Section 2.2. Our algorithm for numerically
solving this problem is outlined below.

Curve initialization. First, we construct a splitting
piecewise-linear curve γ(u) of Ω, i.e., a curve that fulfils
Conditions (C1-3). Additionally, it is useful to require the
curve to satisfy that (a tighter condition than Condition
(C2)): the distance from any one point on the curve to a
point on the domain boundary is bounded from below by a
given tolerance, except at the two ending segments where
the curve meets the domain boundary. The splitting curve
is not yet required to satisfy the geometric criterion that
it should subdivide Ω into two new domains with good
shapes. The purpose of this step is to provide an initial
curve, that is a splitting curve, to more sophisticated pro-
cedures in the later step of the algorithm. This step is
detailed in Section 3.

Curve optimization. Based on the splitting piecewise-
linear curve obtained from the last step, we construct a
splitting spline curve of higher polynomial degree using a
two-stage optimization strategy as follows.

• Stage 1 : find a splitting piecewise-linear curve that
minimizes a penalty function which approaches infin-
ity when the curve tends to violate Conditions (C2-3).
We use a suitable refinement of the piecewise-linear
curve γ(u) obtained in the last step as the initial curve
for the optimization.

• Stage 2 : find a splitting spline curve of degree p ≥ 2
that minimizes the mentioned penalty function. A
sufficiently refined spline fitting to the curve obtained
from Stage 1 is used as the initial curve for the opti-
mization.

We note that the optimization of Stage 1 is less expen-
sive than that of Stage 2 as the spline curve under opti-
mization is only of degree 1. Stage 1 helps to provide a
good feasible initial solution for the optimization of Stage
2. That is, Stage 1 can result in a curve that is closer to
a local minimum than a spline fitting to the initial curve
from Step 1. The precise description of this step shall be
presented in Section 4. The algorithm outline is illustrated
in Figure 5.

(a) (b) (c)

(d) (e) (f)

Figure 5: Illustration of the steps of the algorithm outline. (a) The
domain. (b) A polygon is constructed contained in the domain, it
is triangulated and a pathfinding algorithm is used to construct a
piecewise linear spline. (c) The result of Step (b) is refined. (d) The
result of Step (c) is used as the initial curve in the first optimization
stage. (e) The piecewise linear curve from Step (d) is used as the
control polygon for a degree 2 B-spline. (f) The result of Step (e) is
used as the initial curve in the second optimization stage.

3. Splitting curve initialization

We describe our method for constructing a splitting
piecewise linear path of the domain Ω. We construct a
polygon P interior to Ω and use a Delaunay triangulation
and Dijkstra’s algorithm to produce a path.

A polygon is computed such that it is contained in Ω,
contains A and B and its interior contains A + tα and
B + tβ for all sufficiently small t.

(i) Find all the corners and inflection points of ∂Ω, and
break it up into segments of three types: where the curva-
ture is positive, zero, or negative. Segments of ∂Ω where

4

the curvature is zero can be copied directly into P . Seg-
ments where the curvature is positive can be discretized
as follows: evaluate the segment of the curve at uniformly
spaced parameters, and construct a polygonal path be-
tween the resulting points. Segments where the curvature
is negative can be discretized as follows: evaluate the curve
segment and its derivatives at uniformly spaced parame-
ters, then construct a polygonal path such that the path’s
endpoints and tangents coincide with the curve segment’s
endpoints and tangents, and the path is tangent to the
curve at the evaluated points.

(ii) Refine P as necessary. Refining in the positively or
negatively curved segments simply involves adding more
parameter values and recomputing the polygons. The seg-
ments with zero curvature do not need to be refined. There
are two ways in which refinement can be necessary. The
segments containing A or B may need to be refined, to
ensure that the polygon angles around A and B contain
the directions α and β; refinement may also be required to
eliminate self-intersection of P . If two segments of P inter-
sect each other, they are both refined. As the boundary ∂Ω
does not intersect itself, a sufficiently (locally) refined poly-
gon P will not have intersecting non-neighbouring edges.

Once the polygon P is constructed, we compute a trian-
gulation (we use a constrained Delaunay triangulation). A
graph G is formed, whose vertices are (i) midpoints of the
edges of the Delaunay triangulation that are not edges of
P ; and (ii) the points A1 = A + t1

2 α and B1 = B + t2
2 β,

where t1 and t2 are chosen small enough that A1 and B1

are inside the domain.
Two vertices of the graph G have an edge between them

if the line segment between them does not intersect the
polygon P . Note that there always exists an edge between
two nodes which are in the same triangle of the triangu-
lation. Since ∂Ω has no self-intersections, there must be
a sequence of triangles in the triangulation, starting from
the triangle containing A1 and ending with the triangle
containing B1, such that each consecutive pair of triangles
in the path shares an edge. Therefore, there must exist a
path in G from A1 to B1.

Assign to each edge of G a cost equal to its Euclidean
length. Dijkstra’s algorithm (see for example [8, Section
2.2.2]) finds a path of minimal total cost between two ver-
tices in G, where the total cost of a path is the sum of
the costs of all edges in that path. Thus, Dijkstra’s algo-
rithm produces a path of minimal total length from A1 to
B1 in G. (Before applying Dijkstra’s algorithm, we can re-
move those edges from G which are too close to the domain
boundary and do not contain A1 or B1. This improves the
initial state for the next step of the algorithm, but may in
rare circumstances prevent the existence of a path.)

The line segments from A to A1 and from B1 to B are
added to form a path from A to B. If necessary, self-
intersections of the resulting path are eliminated by cut-
ting off the loops. The path is treated as a linear spline
with evenly spaced knot points. The initial curve con-
structed in this way satisfies the condition (C1-3).

Figure 6: Left: The vertices of the path produced in Step 1 (see
Figure 5 (b)) are directly used as the control points of a quadratic
B-spline curve. The result intersects the boundary of the domain.
Right: The piecewise linear path is refined until the corresponding
quadratic B-spline curve does not intersect the boundary of the do-
main. This is still not a good choice of curve since it can get very
close to the boundary.

4. Splitting curve optimization

A splitting spline curve can be obtained as a sufficiently
refined spline fitting of a splitting piecewise-linear curve
produced by the approach discussed in Section 3. How-
ever, the two new domains split from the original domain
Ω by such a spline curve may not have good shapes. See,
for example, Figure 6. This section will propose an opti-
mization framework which helps to find a splitting spline
curve such that the two corresponding split domains have
relatively good shapes. The optimization is based on min-
imization of a penalty function that tends to infinity when
the curve tends to violate Conditions (C2-3).

We note that using penalty functions is a fundamental
method for numerically solving constrained optimization
in general [13], or for particular applications such as for
solving discrete HJB equations [21].

In order to represent the constructions of the penalty
functions, we shall address each of the treatments of Con-
ditions (C3) and (C2) separately, and formulate the opti-
mization problem afterward.

Throughout the remainder of the paper, if there is a
continuous function f(u, v) that has a finite or infinite limit
at some point (u0, v0) when (u, v) tends to (u0, v0), we will
write f(u0, v0) to mean the limit of the function at the
point (u0, v0).

4.1. Curve-to-boundary penalty function

In order to treat Condition (C3), we consider the inverse
of the squared distance between two points c(u) and b(v):

Ib(u, v) =
1

‖c(u)− b(v)‖2
, (4)

where ‖ · ‖ denotes the Euclidean norm in R2. The func-
tion can be viewed as a penalty function as it penalizes the
curve c(u) from intersecting the boundary curve b(v) from
the point of view of minimization. This is the curve-to-
boundary penalty function. However, because of Condition
(C1), the function Ib(u, v) is unbounded in any neighbor-
hood of one of the two corner points (0, 0) and (1, 1) of
the unit square. As a result, the function is not Riemann

5

integrable over the unit square. Even in the sense of im-
proper integrals, the integral of the function over the unit
square does not converge either, see Lemma 1(ii). By the
following theorem, it is possible to construct a multiplier
function rb(u, v) so that the new function rb(u, v) Ib(u, v)
is Riemann integrable over the unit square and it preserves
penalizing properties of the original function.

Theorem 1. Consider the two spline curves c(u), 0 ≤
u ≤ 1, and b(v), 0 ≤ v ≤ 1 defined in Section 2.2, with
c(0) = b(0) and c(1) = b(1). Assume that

1. p ≥ 1, q ≥ 1, recalling that p and q are spline degrees
of c(u) and b(v) respectively;

2. c′+(0) 6= 0 and c′−(1) 6= 0.
3. c′+(0) 6= β0b

′
+(0) and c′−(1) 6= β′1b

′
−(1) for all β0 > 0

and β1 > 0.

We can construct a continuous piecewise-rational function
rb(u, v) so that

Îb(u, v) = rb(u, v) Ib(u, v) =
rb(u, v)

‖c(u)− b(v)‖2
(5)

satisfies the following properties:

(i) if c(u) intersects b(v) only at u = 0 and u = 1, then

Îb is Riemann integrable over the unit square;
(ii) Îb equals C Ib, for some C > 0, everywhere in [0, 1]2

except in [u1, u2] × [v1, v2] ∪ [un−1, un] × [vn−1, vn]
(where u1, . . . , un are the knots of c and v1, . . . , vn
are the knots of b);

(iii) if c(u) intersects b(v) at a third point (u∗, v∗), i.e.,

0 < u∗ < 1, then
∫∫

[0,1]2
Îb(u, v) dudv = +∞.

We present the proof for the theorem in Appendix A.
The multiplier function has the following form

rb = w0 α0 f0 + wτ ατ 1[0,1]2 + w1 α1 f1, (6)

where α0, ατ , and α1 are some positive constants; w0,
wτ , and w1 are piecewise rational functions given by (A.9)
that only depend on the knot vectors U and V; f0 and f1
are polynomials given by (A.5) that are quadratic func-
tions of the coordinates of the control points of c(u). The
function 1[0,1]2 is the constant 1 function on the domain.
The construction depends on the curves having at least
one internal knot.

4.2. Curve-to-itself penalty function

Similar to the treatment of Condition (C3) discussed
above, we consider the following penalty function which is
related to the inverse of the squared distance between two
points c(u) and c(v) of the splitting curve:

J (u, v) =
(u− v)2

‖c(u)− c(v)‖2
. (7)

We refer to this function as a curve-to-itself penalty func-
tion. It turns out that it is much easier to handle this func-
tion compared to the curve-to-boundary penalty function.
This will be shown by the following theorem.

Theorem 2. Let c(u), 0 ≤ u ≤ 1, be a spline curve of
degree p ≥ 1 and associated with a knot vector U given by
(2). Assume that c fulfils Condition (C-2). Then we have
the following conclusions.

(i) J (u, v) is continuous over [0, 1]2 if and only if c is
differentiable over [0, 1].

(ii) J (u, v) is Riemann integrable over [0, 1]2 (even if c is
not differentiable).

If c violates Condition (C-2)/(i) or (C-2)/(ii), and all ze-
ros of c′ are isolated, then

(iii)

∫∫
[0,1]2

J (u, v) dudv = +∞.

On the other hand, if c′ has non-isolated zeros, the integral
is undefined.

The proof is provided in Appendix B.

4.3. Optimization formulation

The uses of the penalty functions can be summarized in
the following optimization formulation.

minimize
c1,...,cm

ωe
ωe0

1∫
0

‖r′′(u)‖2 du

+

∫∫
[0,1]2

(
ωb Îb(u, v) + ωb Îb̃(u, v) + ωc J (u, v)

)
dudv

(8a)

such that c(0) = A, c(1) = B (8b)

det[c′(0),α] = 0, det[c′(1),β] = 0 (8c)

{c(u), 0 < u < 1} ⊂ int(Ω). (8d)

The first term in (8a) is related to one of the standard
regularity conditions for a curve. The curve r(u) is chosen
as follows: if p > 1, r(u) ≡ c(u); if p = 1, r(u) is a
quadratic spline curve with a uniform and open knot vector
where its control points are inherited from those of c(u).
The indirect imposition of regularization on c when p =
1 is related to the two-stage optimization introduced in
Section 2.3. This is to make Stage 1 capable of providing
a better initial solution to Stage 2.

In Equations (8), ωe is the weighting parameter asso-
ciated with the regularity term. We use ωe0 > 0 as a
reference value for ωe. In this work, we define ωe0 as

max

(
ε,

1∫
0

‖r′′0(u)‖2
)

where ε = 10−6, and r0 is the ini-

tial value of r in the optimization. The coefficient ωb is
the weighting for the penalty function of the curve to the
boundary, and ωc is the weighting for the penalty function
of the curve to itself. The linear constraints (8b) and (8c)
are to make sure the resulting curve satisfies Condition
(C1).

We note that if the domain boundary consists of more
than two spline curves, the extension is straightforward

6

(as long as the domain is still simply connected), as sev-
eral spline curves can be converted into a single spline
curve. However, in order to lessen the effect of the discrep-
ancy between the speed of different parametrized bound-
ary curves, we use a weighted average where we weight
the integral with respect to each boundary curve accord-
ing to its length. More sophisticated approaches can be
employed, such as reparameterizing the combined single
curve into a unit-speed curve, however we observe that
the averaging according to curve lengths can produce suf-
ficiently satisfactory results in practice.

Numerical approaches for solving the optimization prob-
lem 8 shall be addressed in Section 5.1. Our approach to
computing the penalty functions depends on methods pre-
sented in Appendix C.

4.4. Two-stage optimization strategy

We apply standard nonlinear optimization methods to
compute a B-spline curve of degree 2 or more solving
Eq. (8). It is necessary to find a feasible solution to use
as an initial point. Our approach is to choose as an ini-
tial control polygon a solution of Eq (8) among a space of
linear B-splines.

Our approach to solving Eq (8) can be summarized as
follows:

• Use a pathfinding algorithm to choose a knot vector
and initial curve for the first optimization stage (Sec-
tion 3).

• First optimization stage: solve Eq (8) in the space of
linear splines with the given knot vector.

• Second optimization stage: solve Eq (8) in the space of
splines with desired degree and the given knot vector.
To choose the initial spline, we treat the solution of
the previous optimization stage as a control polygon.
To ensure that the initial spline satisfies the condi-
tions, we detect polynomial pieces of the spline where
the conditions fail, and refine those pieces by adding
control points along the corresponding segments of
the control polygon.

Using the result of the first optimization stage as the con-
trol polygon has two advantages (compared to, for exam-
ple, fitting a higher order spline to the polygon): firstly, it
saves on calculation while resulting in a curve that fulfils
the tangential boundary conditions. Secondly, it makes it
easy to include in the penalty function for the first stage
a regularity term corresponding to a higher order spline
with the same control net.

The requirement that the initial curve for the first stage
is a splitting curve ensures the stability of the optimiza-
tion. Since this initial curve has uniformly spaced knots,
the result for p = 1 should be a control polygon with edges
of approximately equal length. This enables the spline ap-
proximation with p = 2 in the second stage to have speed
that is not far from uniform.

5. Examples

5.1. Implementation remarks

In order to solve the optimization problem (8), we have
used the following numerical optimization approaches.

• Gradient descent. We use a backtracking inexact line-
search (see [13, Chapter 3]) where, in addition to the
Arjimo condition, we check if a point is visible. This
approach works stably but is rather slow.

• Broyden-Fletcher-Goldfarb-Shanno (BFGS)-based
quasi-Newton method. (See [13, Chapter 8].) This
method often has faster convergence. Again, apart
from checking if a point satisfies the Wolfe condition,
we have to check the feasibility of the point.

We note that both approaches convert the constrained op-
timization problem (8) into an unconstrained one by tak-
ing the constraint (8d) as a feasibility check for the as-
sociated line-search. This is done in a similar fashion to,
e.g., the methods using barrier functions to handle generic
constrained optimizations [13, Chapter 17]. We observe
that it suffices to perform this feasibility check in only a
few iterations when the optimization stepsize is relatively
large. In our examples, we neglect the check if the step-
size is less than 10−2. Further analyses of these numerical
approaches are beyond the scope the present paper.

For the examples below, we use Gauss quadrature to
compute the penalty functions. In each dimension we use
10 Gaussian points distributed along each knot interval. In
this way we obtain high accuracy so that the quadrature
error does not influence the resulting curves. We have
not studied whether it suffices to use less Gaussian points.
The values of the B-spline basis functions at the Gaussian
points are precomputed to reduce the computation time.

5.2. Reducing shape dependency for optimization weight-
ing parameters

In order to make the the optimization problem (8) in-
variant to scaling, the following coefficients have to be de-
fined: (i) the coefficient for the curve-to-boundary penalty
function, (ii) the coefficient for the curve-to-itself penalty
function, and (iii) the reference energy for the regularity
term. Thanks to the way the penalty functions are de-
fined, varying the coefficients has a predictable effect on
every shape. This is demonstrated in Figures 7 and 8
where we show that varying the coefficient for the curve-
to-boundary penalty affects the distance of the curve to
the boundary in a similar way in 4 different examples. We
also find out that the weighting parameters (30, .1, 1) can
produce good results.

In Figure 9, we show other examples of the maze-shaped
domains. This, in turn, shows the robustness of our ap-
proach.

In order to demonstrate the current work’s connection
to the segmentation problem, we show in Fig. 10 a decom-
position of a mechanical part into topological hexahedra.

7

Figure 7: Example domains and initial curves used for the examples
in Figure 8.

(10,.1,1) (30,.1,1) (50,.1,1) (100,.1,1)

Figure 8: Effects of the weighting parameters (ωb, ωc, ωe).

Figure 9: Applying our method to complex maze-like domains still
produces high quality curves.

The mechanical part and the cutting loops used for the
segmentations are intentionally made complicated so that
the example can best show the connection and the robust-
ness of our approach.

6. Conclusion and outlook

The results of this paper form an important step in the
segmentation of a boundary represented solid into topo-
logical hexahedra. The segmentation procedure described
in [5, 12] requires the construction of auxiliary edges which
are used as part of a cutting loop to segment a solid into
two pieces. Geometric conditions on the valid cutting
loops can dictate boundary conditions for the new aux-
iliary edges. This paper provides a construction of edges

Solids

���
@@R

�
���

HHj

(a-0) Original solid (a-1) (a-2)

Trimmed surfaces

(b-0) (b-1) (b-2)

(Trimmed) Parameter domains
(c-0) (c-1) (c-2)

Figure 10: An isogeometric segmentation of a mechanical part re-
quiring auxiliary curve constructions. The solid in (a-0) is first cut
into the two pieces shown in (a-1). The top piece is a topological
hexahedron. The bottom piece is then segmented into the two topo-
logical hexahedra shown in (a-2). Cutting the solid into just three
topological hexahedra requires highly curved cuts. The marked face
in (a-0), reproduced in blue in (b-0), is a trimmed surface with base
NURBS surface shown in orange. In (c-0) we show the trimmed do-
main (blue) and the domain of the base NURBS surface (orange).
The marked trimmed surface in (a-0) is split into 2 as shown by (a-
1), (b-1) and (c-1). The marked face of the lower solid in (a-1) is
also split into 2 as shown in (a-2), (b-2) and (c-2).

which can split a face into two pieces while satisfying these
boundary conditions. The method has been demonstrated
to work even on quite complicated domains. In Figure 2
we show how our method can help to avoid badly shaped
topological hexahedra in a segmentation by comparing the
result of our method against an older approach we used.

Our method focuses on splitting the (2D) domain of a
(3D) trimmed surface. Since a trimmed surface is defined
by its domain and an embedding, a splitting of the 2D do-
main implies a splitting of the 3D surface. As a result, no
more constraints are required to ensure that the generated
curve lies within the surface. However, for highly distorted
surfaces, the distortion could be taken into account in the
penalty function to improve the resulting curves. We have
not considered this yet.

Once a cutting loop has been chosen and its auxiliary
edges have been constructed, the next step is the con-
struction of a cutting surface having the given loop as its
boundary. This problem can be seen as a higher dimen-

8

sional version of the problem studied in this paper, and,
besides being more computationally expensive, comes with
additional difficulties including the choice of an appropri-
ate trimmed domain for the surface. The cutting surface
problem is the topic of ongoing work.

Acknowledgment: This research was supported by the EC
through the FP7 projects INSIST (GA 289361) and EX-
AMPLE (GA no. 324240), and by the FWF, NFN S117.

Appendix A. Regularization of the curve-to-
boundary penalty function

Lemma 1 aids the proof of Theorems 1 and 2.

Lemma 1. Let c(u),b(v) : [0, ε]→ Rn be spline curves of
degree 1 or higher. Assume c(0) = b(0) and c′+(0) 6= 0 6=
b′+(0). Then:

(i) if c′+(0) 6= βb′+(0) for any β > 0 then

u+ v

‖c′+(0)u− b′+(0)v‖
(A.1)

is bounded for u, v ≥ 0 with (u, v) 6= (0, 0), and

lim
(u,v)→(0+,0+)

‖c(u)− b(v)‖
‖c′+(0)u− b′+(0)v‖

= 1; (A.2)

(ii) ∫∫
[0,ε]2

1

‖c(u)− b(v)‖2
dudv (A.3)

is divergent in the sense of improper integrals.

Proof. Since c(u),b(v) are splines of degree at least 1,

c(u) = c(0) + c′+(0)u+ o(u) as u→ 0+

b(v) = b(0) + b′+(0)v + o(v) as v → 0+.
(A.4)

(i) For u, v ≥ 0 and (u, v) 6= (0, 0), we have
‖c′+(0)u − b′+(0)v‖ ≥ G(u + v), where G =
minu≥0,v≥0,u+v=1 ‖c′+(0)u−b′+(0)v‖, which exists by com-
pactness of the set {(u, v), u ≥ 0, v ≥ 0, u + v = 1} and
is positive by the assumption of part (i) of the lemma.
Therefore (A.1) is bounded. So by Equation (A.4) and
the triangle inequality, as (u, v)→ (0+, 0+),

‖c(u)− b(v)‖
‖c′+(0)u− b′+(0)v‖

= 1 +
o(u) + o(v)

G(u+ v)
= 1 + o(1)

and Equation (A.2) follows.

(ii) By Equation (A.4) there are M > 0 and ε1 with 0 <
ε1 < ε such that ‖c(u) − b(v)‖2 < M(u2 + v2) for all
0 < u, v < ε1. Thus

∫∫
[0,ε]2

1
‖c(u)−b(v)‖2 dudv diverges.

By transforming the domain, Lemma 1 can be applied
to two splines c,b such that c(ū) = b(v̄) for arbitrary ū, v̄
in their domains and even to any of the four quadrants

around (ū, v̄), to see the behaviour of the function in any
of the four limits (ū±, v̄±). In two cases, the sign of β in
the condition of Lemma 1 (i) must be reversed.

As a consequence of Lemma 1, the following two func-
tions can be used to eliminate the two singular points (0, 0)
and (1, 1) for the curve-to-boundary function:

f0(u, v) = ‖c′+(0)u− b′+(0)v‖2

f1(u, v) = ‖c′−(1)(u− 1)− b′−(1)(v − 1)‖2. (A.5)

In order to obtain a multiplier function rb(u, v) as men-
tioned in Section 4.1, we will define weighting functions
w0, wτ , and w1 associated with the three functions: f0,
the indicator function 1[0,1]2 , and f1 so that

(W1) w0 f0 and w1 f1 are supported over a neighborhood of
the corner points (0, 0) and (1, 1) respectively;

(W2) w0,1 isolates the two corner points (0, 0) and (1, 1)
from the support of 1[0,1]2 ;

(W3) the three weighting functions form a set of coefficients
of a convex interpolation, i.e., they are non-negative
and form a partition of unity.

The grid lines corresponding to the knots ui of the
knot vector Up and the the knots vj of the knot vec-
tor Vq partition the unit square into rectangular boxes
[ui, ui+1] × [vj , vj+1], i = 1, . . . ,m − 1, j = 1, . . . , n − 1.
Let D0 = [u1, u2]×[v1, v2] and D1 = [um−1, um]×[vn−1, vn]
be the boxes that contain the two corner points (0, 0) and
(1, 1) respectively as illustrated in Figure A.11(a).

(a)

(b)

(c) w0(u, v) (d) wτ (u, v) (e) w1(u, v)

0 ũ0 u2 ui

um−1 1ũ1

ṽ1

0

ṽ0

v2

vj

vn−1

1

Figure A.11: Construction of weighting functions for regularizing the
curve-to-boundary penalty function. (a): Partition of the unit square
induced by grid lines defined by horizontal knots 0 = u1, . . . , um = 1
and vertical knots 0 = v1, . . . , vn = 1; domains D0 (in red) and
D1 (in blue) are subdivided into 4 boxes. (b): Color scale used to
depict the weighting functions. (c), (d), (e): normalizations of these
functions (by its summation) give the weighting functions.

9

First, we define the following auxiliary functions:

ŵ0(u, v) = 1D0

(u2 − u
u2 − u1

)p0 (v2 − v
v2 − v1

)q0
(A.6)

ŵ1(u, v) = 1D1

(u− um−1
um − um−1

)p1 (v − vn−1
vn − vn−1

)q1
(A.7)

where p0, q0, p1, and q1 are positive integers. Note
that w0,0 is the bivariate Bernstein polynomial of degrees
(p0, q0) over D0 which does not vanish at the lower left
corner of D0. Similarly, w1 is the bivariate Bernstein poly-
nomial of degrees (p1, q1) over D1 which does not vanish
at the upper right corner of D1. See Figure A.11(c)(e).

In order to construct the weighting function wτ , sub-
divide D0 into four new boxes by inserting line segments
{(ũ0, v) | v1 ≤ v ≤ v2} and {(u, ṽ0) |u1 ≤ u ≤ u2}; and
subdivide D1 by inserting line segments {(ũ1, v) | vn−1 ≤
v ≤ vm} and {(u, ṽ1) |um−1 ≤ u ≤ um}; see Figure
A.11(a). Letting hp(x, a, b) = 1 − max(x−ab−a , 0)p, define
another auxiliary function ŵτ :

ŵτ (u, v) = 1[0,1]2 − 1D0
hpτ (u, ũ0, u2)hqτ (v, ṽ0, v2)

− 1D1
hpτ (u, ũ1, um−1)hqτ (v, ṽ1, vn−1). (A.8)

Figure A.11(d) gives an illustration for the function. The
weighting functions can now be defined:

w•(u, v) =
ŵ•

ŵ0(u, v) + ŵτ (u, v) + ŵ1(u, v)
, (A.9)

where • stands for one of the symbols 0, 1, and τ . It
is straightforward that the weighting functions defined in
(A.9) satisfy the conditions (W1-3).

We can now define a multiplier function as follows.

rb = w0 α0 f0 + wτ ατ 1[0,1]2 + w1 α1 f1, (A.10)

where α0, ατ , and α1 are some positive constants. We use
α0 and α1 to control the scaling of the two functions f0 and
f1; we used α0 = α1 = 10−3. Meanwhile, ατ helps to make
the optimization problem invariant under similarities. For
this purpose, we define ατ as the inverse of the integral of
the corresponding curve-to-boundary function associated
with the initial curve for the optimization problem (8). We
are now ready to prove Theorem 1.

Proof of Theorem 1. First, we note that as the weight-
ing functions and f0, f1 are piecewise rational functions
continuous over [0, 1]2, rb(u, v) must be a piecewise ratio-
nal function continuous over [0, 1]2.

(i) By Assumptions (A-1), (A-2), Hypotheses 1-3 of this
theorem, Lemma 1(i) and Equation (5),

1

α0
lim

(u,v)→(0+,0+)̂
Ib(u, v)=

1

α1
lim

(u,v)→(1−,1−)̂
Ib(u, v)=1.

As we define Îb(0, 0) = α0 and Îb(1, 1) = α1, Îb
is bounded and continuous, and therefore Riemann
integrable over [0, 1]2.

(ii) Equations (A.6), (A.7), (A.8) and (A.9) directly imply
that wτ ≡ 1 and w0 ≡ w1 ≡ 0 over [0, 1]2 \ (D0 ∪D1).

Therefore, Îb ≡ ατIb over [0, 1]2 \ (D0 ∪ D1).

(iii) Lemma 1(ii) directly implies this conclusion for
(u∗, v∗) ∈ [0, 1]2 \ (D0 ∪D1). Consider the case where
(u∗, v∗) ∈ D0, the case where (u∗, v∗) ∈ D1 is similar.
Hypothesis 3 then implies that either p > 1 or q > 1.
On the other hand, Assumptions (A-1), (A-2), and
Hypotheses 1–3 imply that f0 only vanishes at (0, 0).
Thus, f0(u∗, v∗) 6= 0. Consequently, in the limiting

process when (u, v) → (u∗, v∗), Îb(u, v) is equivalent
to Ib(u, v)1. Therefore, Lemma 1(ii) again leads to
the conclusion.

Appendix B. Regularity properties of the curve-
to-itself penalty function

Proof of Theorem 2. Partition the unit square into
the sets Bi,j = [ui, ui+1] × [uj , uj+1], 1 ≤ i ≤ m − 1,
1 ≤ j ≤ n− 1. From Equation (7) and Lemma 1(i),

lim
(u,v)→(u−

i ,u
+
i)

J (u, v)

g(u, v)
= 1 = lim

(u,v)→(u+
i ,u

−
i)

J (u, v)

g(u, v)
, (B.1)

where g(u, v) :=
(u− v)2

‖c′−(ui)(u− ui)− c′+(ui)(v − ui)‖2
.

(i) By Condition (C-2), J is continuous at any (u, v) where
u 6= v. For (u, v) ∈ Bi,i which includes the case u = v,

c(u)− c(v) = (u− v)
(
c′(v) + (u− v)Pi(u, v)

)
, (B.2)

for a vector-valued polynomial Pi(u, v). Condition (C-2)
implies ‖c′(u∗)‖ > 0 for all u∗ ∈ [ui, ui+1], 1 < i < m, and
with Equations (7), (B.2) this implies that J is continu-
ous at every (u, u) where u 6= ui, 1 < i < m. Therefore
we only need to consider discontinuities of J at (ui, ui),
1 < i < m. We divide the proof of (i) into two parts.

Sufficient condition. Assume c is differentiable at each
(ui, ui). Then c′−(ui) = c′+(ui), and Equations (B.1), (B.2)
can be used to show that the four limits of J at (u±i , u

±
i)

are equal. Thus J is continuous at each (ui, ui) and, we
conclude, over the whole unit square.

Necessary condition. If c is not differentiable at some ui,
1 < i < m, so that c′+(ui) 6= c′−(ui), then for α > 0,
β > 0 such that α + β = 1, we see from (B.1) that
lim
n→∞

J (ui − α
n , ui + β

n) is not independent of α and β.

Therefore J is not continuous at (ui, ui).

(ii) By Lemma 1 (i) and condition C-2/(ii), g(u, v) is
bounded on the sets {(u, v) : u < ui, v > ui} and
{(u, v) : u > ui, v < ui}. By (B.1), J (u, v) is bounded
on the interiors of Bi−1,i and Bi,i−1. By Equation (B.2),
J (u, v) is bounded on the interiors of each Bi,i. Thus J is

1this is not true, if Hypothesis (iii) is disregarded and p = q = 1.

10

almost everywhere continuous and bounded, and therefore
Riemann integrable.

(iii) We treat the violations of the conditions separately:

(C-1)/(i): Suppose u, v are such that u 6= v and c(u) =
c(v). Apply Lemma 1/(ii) to the two curves formed by
restricting c to neighbourhoods of u and v.

(C-1)/(ii): Since c is a spline, either all zeros of c′ are
isolated or c′ is zero on a knot interval. If c′ is zero on an
interval (ui, ui+1) then c is constant on the interval and J
is undefined on Bi,i. Thus the integral is undefined.

If there is isolated u∗ such that c′+(u∗) = 0, then,
applying Equations (7), (B.2), J (u, v) = ‖O(u − u∗) +
O(v−u∗)‖−2 as (u, v)→ (u∗+, u∗+). Therefore there exist

ε, C > 0 such that J (u, v) > (C((u− u∗) + (v − u∗)))−2
for all u, v ∈ (u∗, u∗ + ε), so the integral diverges.

Appendix C. Computation of the regularized
penalty functions

Before discussing our approach for computing the regu-
larized penalty functions, we will introduce several kinds
of bivariate spline functions which help to make the com-
putation more efficient.

Representation of the difference between two points of one
spline curve In order to compute the denominator of the
curve-to-itself penalty function J (u, v) given by (7) in a
diagonal box Bi,i = [ui, ui+1]× [ui, ui+1], we let Q : Bi,i →
R2 be the vector-valued polynomial satisfying

c(u)− c(v) = (u− v)Q(u, v). (C.1)

It is obvious that Q(u, v) is a bivariate spline of degree
p− 1 in both u and v. Pekerman et al. [15] derived explic-
itly the control points of its spline representation for the
case where c(u) is a Bézier curve. For this case, Q(u, v)
is a Bézier surface described by (m − 1)2 control points
and (m − 1)2 basis functions. Extending to the case of a
general spline curve requires either implicit representation
of the control points of the spline surface Q(u, v) or break-
ing the curve into Bézier segments. In the remainder of
the section, we will represent the spline surface Q(u, v) in
terms of just m control points and m functions, and the
control points are the same as those of the curve.

Let D =
⋃
j

(
[uj , uj+1) × [uj , uj+1)

)
, the union of the

diagonal semi-open boxes associated with the knot vec-
tor U given by (2). Consider B-splines Ni,p,U of degree p
associated with U . We assume that p ≥ 1. Define

Qi,p(u, v) =
Ni,p,U (u)−Ni,p,U (v)

u− v
. (C.2)

Qi,p is well defined because of the fundamental polynomial
remainder theorem. Further, as

∑m
i=1Qi,p ≡ 0, the func-

tions Qi,p are not linearly independent2. The following

2In fact, if all inner knots have multiplicity less than p + 1, the
dimension of the linear space spanned by Qi,p, 1 ≤ i ≤ m, are m−1.
We leave the proof as an exercise for readers.

proposition shows that these functions form a spanning
set of the space of functions Q(u, v) given by (C.1).

Proposition 1. For p ≥ 1, the functions Qi,p defined by
(C.2) have the following properties.

(i) For any spline curve c(u) of the form (1), the follow-
ing identity holds for all (u, v) ∈ D:

c(u)− c(v) = (u− v)

m∑
i=1

ciQi,p(u, v). (C.3)

(ii) They can be computed recursively as below:

Qi,p(u, v) = (aiv + bi)Qi,p−1(u, v) (C.4)

+ (civ + di)Qi+1,p−1(u, v)

+ aiNi,p−1,U (u) + ciNi+1,p−1,U (u),

for all (u, v) ∈ D, where

(ai, bi) =
(1,−ui)
ui+p − ui

, (ci, di) =
(−1, ui+p+1)

ui+p+1 − ui+1
. (C.5)

In (C.4), we assume that Qi,0 ≡ 0 and with the stan-
dard convention that a fraction equals 0 if its denom-
inator equals 0.

(iii) Qi,p(u, u) is the derivative of Ni,p,U (u).

Proof. (i) can be derived directly from (C.1) and (C.3).
(ii) Equation (C.4) can be derived from Equation (C.2)
and the recursive evaluation of B-splines Ni,p,U ,

Ni,p,U (t) = (ait+ bi)Ni,p−1,U (t) + (cit+ di)Ni+1,p−1,U (t).

(iii) The following Taylor expansion of Ni,p,U proves (iii):

Ni,p,U (u) = Ni,p,U (v) +N ′i,p,U (v)(u− v) + o(u− v)2.

Representation of Taylor-like expansion coefficients of a
spline curve A one-sided Taylor expansion of c around ū,
ui ≤ ū < ui+1, can be written as below for all u ∈ [ui, ui+1]

c(u) = c(ū) + c′+(ū)(u− ū) + ĉ+(u, ū)(u− ū)2, (C.6)

where ĉ+(u, ū) =

p∑
k=2

1

k!
c
(k)
+ (ū)(u− ū)k−2, (C.7)

and c
(k)
+ denotes a right-sided derivative of order k of c.

We shall see in (C.13) that the representation (C.6) allows
for stable computations for the penalty functions.

Equation (C.7) provides a direct approach for comput-
ing the term. However, this approach is not preferable.
Similar to the evaluation of the quantity c(u) − c(v) in
Proposition 1, we introduce the following spline functions
that also allow for a computation of the term as a linear
combination of only m functions.

We assume p ≥ 2. Define the following spline functions:

Hi,p =
Qi,p(u, v)−Qi,p(v, v)

u− v
. (C.8)

11

Similar to the definition of Qi,p given by (C.2), this def-
inition is also well-defined. Also, the set of Hi,p is not
linearly independent as the sum of all these functions van-
ishes. However, different from Qi,p, Hi,p is not symmetric
in its variables. That is, Hi,p(u, v) is in general different
from Hi,p(v, u). The following proposition provides a re-
cursive formula for the evaluation of these spline functions.

Proposition 2. For p ≥ 2, the functions Hi,p defined by
(C.8) have the following properties.

(i) For any spline curve c(u) given by (1), we have the
following identity:

c(u) = c(ū) + c′+(ū)(u− ū)

+
(m∑
i=1

ciHi,p(u, ū)
)

(u− ū)2, ∀u ∈ [ui, ui+1) (C.9)

(ii) Hi,p can be computed recursively as follows

Hi,p(u, v) = (aiv + bi)Hi,p−1(u, v) (C.10)

+ (civ + di)Hi+1,p−1(u, v)

+ aiQi,p−1(u) + ciQi+1,p−1(u),

for all (u, v) ∈ D, where ai, bi, ci, di are given by (C.5)
and where we assume that Hi,1 ≡ 0.

Proof. The proof is similar to that of Proposition 1.
Evaluation of the regularized penalty functions With the in-
troduction of the spline functions Qi,p, and Hi,p, together
with Equations (C.3), and (C.9), the computation of the

penalty functions Î and J are ready, except that we have
to compute the two functions in the neighborhoods of a
point at which one of the two functions has the form 0/0.
At such a point, we will convert each function into a form
in polar coordinate that is no longer a 0/0 form. As both
of the penalty functions can be derived from the following
asymptotically 0/0 function

R(u, v) =
‖c(u)− b(v)‖

‖c′+(0)u− b′+(0)v‖
=
‖c(u)− b(v)‖

f0
(C.11)

that appears in (A.2) in Lemma 1, it suffices to consider
this function alone. Similar to (C.6), Taylor-like expan-
sions for c(u) near u = 0 and b(v) near v = 0 read

c(u) = c(0) + c′+(0)u+ ĉ+(0)u2, ∀u ∈ [0, ε)

b(v) = b(0) + b′+(0)v + b̂+(0)v2, ∀v ∈ [0, ε)
(C.12)

where ĉ, b̂, defined analogously to (C.7), can be calculated
using the approach stated in Proposition 2. We perform
the change of variables u = r cosφ, v = r sinφ. As we
consider 0 < u, v < ε, we assume that 0 < φ < π/2. In
the form of new variables, dividing both numerator and
denominator of R2(r cosφ, r sinφ) by the common term r
we have

R2(r cosφ, r sinφ) = 1 + 2r
〈f̃0, R̃〉
‖f̃0‖2

+ r2
〈R̃, R̃〉
‖f̃0‖2

(C.13)

where f̃0(r, φ) = c′+(0) cosφ − b′+(0) sinφ and R̃(r, φ) =

ĉ+(0) cos2 φ − b̂+(0) sin2 φ. Because of Lemma 1(i),
‖f̃0(r, φ)‖2 is bounded away from zero. Thus, the penalty
functions can be evaluated using (C.13) and the spline
functions Hi,p analyzed in Proposition 2.

References

[1] P.K. Agarwal, P. Raghavan, and H. Tamaki. Motion planning
for a steering-constrained robot through moderate obstacles. In
Proceedings of the Twenty-seventh Annual ACM Symposium
on Theory of Computing, STOC ’95, pages 343–352, New York,
NY, USA, 1995. ACM.

[2] J.A. Cottrell, T.J.R. Hughes, and Y. Bazilevs. Isogeometric
Analysis: Toward Integration of CAD and FEA. John Wiley
& Sons, 2009.

[3] G.A Elber, T.B Grandine, and M.-S. Kim. Surface self-
intersection computation via algebraic decomposition. CAD
Computer Aided Design, 41(12):1060–1066, 2009.

[4] P. Jacobs and J. Canny. Planning smooth paths for mobile
robots. In Robotics and Automation, 1989. Proceedings., 1989
IEEE International Conference on, pages 2–7 vol.1, May 1989.

[5] B. Jüttler, M. Kapl, D.-M. Nguyen, Q. Pan, and M. Pauley. Iso-
geometric segmentation: The case of contractible solids without
non-convex edges. Computer-Aided Design, 57(0):74 – 90, 2014.

[6] Y. Kanayama and B.I. Hartman. Smooth local path planning
for autonomous vehicles. In 1989 IEEE International Confer-
ence on Robotics and Automation, Proceedings, pages 1265–
1270, May 1989.

[7] J.-P. Laumond, S. Sekhavat, and F. Lamiraux. Guidelines in
nonholonomic motion planning for mobile robots. In Robot Mo-
tion Planning and Control, pages 1–53. Springer-Verlag, 1998.

[8] S.M. LaValle. Planning algorithms. Cambridge University
Press, Cambridge, 2006.

[9] Z. Li, D. S. Meek, and D. J. Walton. A smooth, obstacle-
avoiding curve. Computers & Graphics, 30(4):581–587, 2006.

[10] T. Maekawa, T. Noda, S. Tamura, T. Ozaki, and K.-I. Machida.
Curvature continuous path generation for autonomous vehicle
using B-spline curves. Computer-Aided Design, 42(4):350–359,
2010.

[11] A. Malhotra, J. H. Oliver, and W. Tu. Synthesis of spatially
and intrinsically constrained curves using simulated annealing.
Journal of Mechanical Design, 118(1):53–61, Mar 1996.

[12] D.-M. Nguyen, M. Pauley, and B. Jüttler. Isogeometric segmen-
tation. Part II: On the segmentability of contractible solids with
non-convex edges. Graphical Models, 76(5):426 – 439, 2014.

[13] J. Nocedal and S.J. Wright. Numerical optimization. Springer,
New York, NY, 2. ed. edition, 2006.

[14] M. Pauley, D.-M. Nguyen, D. Mayer, J. Špeh, O. Weeger, and
B. Jüttler. The isogeometric segmentation pipeline. Submitted.

[15] D. Pekerman, G. Elber, and M.-S. Kim. Self-intersection detec-
tion and elimination in freeform curves and surfaces. Computer-
Aided Design, 40(2):150 – 159, 2008.

[16] L. Piegl and W. Tiller. The NURBS Book (2nd Ed.). Springer-
Verlag New York, Inc., New York, NY, USA, 1997.

[17] T. Samoilov and G. Elber. Self-intersection elimination in meta-
morphosis of two-dimensional curves. Visual Computer, 14(8-
9):415–428, 1998.

[18] A. Scheuer and Th. Fraichard. Continuous-curvature path plan-
ning for car-like vehicles. In IROS ’97., Proceedings of the 1997
IEEE/RSJ International Conference on Intelligent Robots and
Systems, volume 2, pages 997–1003, Sep 1997.

[19] C.-C. Tsai, H.-C. Huang, and C.-K. Chan. Parallel elite genetic
algorithm and its application to global path planning for au-
tonomous robot navigation. IEEE Transactions on Industrial
Electronics, 58(10):4813–4821, Oct 2011.

[20] X. Wang and X. Qian. An optimization approach for construct-
ing trivariate B-spline solids. Comput.-Aided Des., 46:179–191,
2014.

12

[21] J. Witte and C. Reisinger. Penalty methods for the solution
of discrete HJB equations – continuous control and obstacle
problems. SIAM Journal on Numerical Analysis, 50(2):595–
625, 2012.

13

