
Patchwork B-Spline Refinement

Nora Engleitnera, Bert Jüttlerb
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Abstract

Hierarchical splines allow to use representations with varying level of detail in different parts of a geometric model.
However, the progression from coarse to fine scale is based on a single sequence of nested spline spaces. More precisely,
each space defining a representation of some level must simultaneously be a subspace of all the higher level spaces and
contain all the lower level ones. This requirement imposes severe restrictions on the available refinement strategies.
We introduce the new framework of Patchwork B-splines (PB-splines), which alleviates these constraints and therefore
increases the flexibility of the representations that are available in different parts of a geometric model. We derive the
mathematical foundations of multivariate PB-splines, in particular focusing on the construction of a basis that forms a
convex partition of unity. This generalizes the concept of truncated hierarchical (TH) B-splines to the novel framework.
Moreover, we discuss the application of PB-splines to surface reconstruction with adaptive refinement. It is observed
that the increased flexibility of the local representations provides significant advantages.
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Figure 1: Surface approximation using PB-splines (left). Vertical refinement dominates in the domain’s western part (center and top right),
while mostly horizontal refinement is used in the eastern one (center and bottom right).

1. Introduction

Due to its computational advantages, the use of tensor–
product spaces has become one of the most popular ap-
proaches to generate multivariate splines. The resulting
representations have become a de-facto standard for the
description of free-form surfaces in Computer-Aided De-
sign [6]. More recently, they have also been adopted for
discretizing partial differential equations in the framework
of isogeometric analysis [14], which aims at bridging the
gap between geometry design and numerical simulation
by employing the same class of functions for describing
the geometry of an object and for representing the fields
describing physical phenomena.

As a limitation, the use of tensor-product splines essen-
tially rules out the possibility of performing local refine-
ment, since the insertion of a knot creates a knot line (or,
more generally, a knot hyperplane) that extends through-
out the entire domain. Generalizations of tensor-product

splines that provide the possibility of local refinement are
therefore of vital interest, both for design and analysis.

Their investigation started with the work of Forsey and
Bartels [9] on hierarchical B-spline refinement, which was
later revised and extended by Kraft [19]. T-splines, which
were introduced by Sederberg et al. [25], address the local
refinement challenge by generating surfaces from control
meshes with T-junctions. Additional constraints are re-
quired to guarantee linear independence [22], which is an
essential prerequisite for using T-splines in analysis. The
algebraically complete spaces of polynomial spline func-
tions on hierarchical T-meshes were studied in numerous
publications, and found to be useful for design and analysis
[21, 17]. Finally, Dokken et al. addressed the adaptive re-
finement challenge by introducing the framework of locally
refined splines [3].

The hierarchical approach to adaptive spline refinement
has lately been revisited, resulting in the introduction
of truncated hierarchical B-splines [11]. Besides form-
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ing a convex partition of unity, they provide good stabil-
ity properties, algebraic completeness under mild assump-
tions on the refinement procedure, and optimal approxi-
mation power [12, 23, 27]. Additionally, several generaliza-
tions have been proposed, including hierarchical versions
of Powell-Sabin splines [26], triangular splines [30], box
splines [31, 15], B-splines on triangulations [16], T-splines
[5], and of subdivision spline functions [29, 32]. Various ap-
plications of hierarchical tensor-product splines have been
presented: These include surface fitting [13, 18] and iso-
geometric analysis [1, 2, 20, 24], while applications and
implementation aspects of truncated hierarchical B-splines
were studied in [10].

For hierarchical B-splines, the progression from coarse
to fine scale relies on a single sequence of nested tensor-
product spline spaces, where each element is a refinement
of its predecessor by knot insertion and/or degree eleva-
tion. This requirement restricts the choice of refinement
strategies. For instance, in the example shown in Fig. 1,
it is advantageous to combine vertical refinement in the
western part of the domain with horizontal refinement in
the eastern part, but this cannot be achieved by the exist-
ing construction. See also Fig. 8 on page 10 and Fig. 9 on
page 11 for a comparison with hierarchical B-splines.

In order to increase the flexibility, we introduce the more
general framework of Patchwork B-splines. In an ear-
lier conference publication [4], we investigated bivariate
splines of uniform degree and maximum smoothness. The
present paper focuses on the general multivariate patch-
work spline space, which combines splines of arbitrary de-
gree and smoothness. We present the construction of a
basis for this space, which relies on a suitable selection
mechanism for tensor-product B-splines. Furthermore, in
order to obtain a non-negative partition of unity, we estab-
lish a new truncation mechanism. It is different from the
one described in [4], which did not allow us to prove the
non-negativity of the resulting truncated B-splines. We
also complement the presented theory by algorithms and
experimental results for the automatic generation of feasi-
ble patchwork hierarchies and for adaptive surface approx-
imation.

The remainder of the paper is organized as follows:
First, we set up our framework and define the patchwork
spline space and its basis in the next three sections. We
then proceed to the characterization result (Theorem 3 in
Section 6), which is derived under suitable assumptions
and with the help of local spline spaces satisfying homo-
geneous boundary conditions, which are analyzed before.
The truncation mechanism, which is established in Section
8, requires us to introduce the concept of tail hierarchies in
the preceding section. The last part of the paper focuses
on algorithms and the application of Patchwork B-splines
to adaptive surface approximation.

2. Preliminaries: Tensor-product splines

Throughout this paper we consider a finite sequence of
spline spaces V ` = spanB`, ` = 1, . . . , N , which are de-
fined on the d–dimensional unit cube [0, 1]d. Each space is
spanned by tensor-product B-splines B` = (β`j)j∈J ` , the

elements of which are enumerated by an associated index
set J `. The upper index ` will be called the level.

The spline bases B` consist of tensor-product B-splines
that are defined by d open knot vectors with boundary
knots 0 and 1. For each spline space, we choose a poly-
nomial degree p` = (p`1, . . . , p

`
d) and use only inner knots

with multiplicity not exceeding p`i in the i-th coordinate.
All boundary knots possess multiplicity p`i + 1. The sup-
ports of the basis functions are axis-aligned boxes in [0, 1]d.

The indices of the spaces V ` define a natural total or-
dering of the sequence. The subspace relation between the
spline spaces restricts it to a partial ordering, as follows:
The level k is said to precede the level `, k ≺ `, if k is less
than ` and V k is a subspace of V `.

The order of smoothness of the functions in the spline
spaces V ` depends on the level ` and the location x ∈
(0, 1)d. The order of smoothness at x = (x1, . . . , xd) is
equal to

s`i(x) = p`i −m`
i(xi),

where m`
i(xi) denotes the multiplicity of xi in the knot vec-

tor of direction i that has been used to define the tensor-
product spline space V `. In particular, we have m`

i(xi) = 0
if xi is not present in that knot vector. In fact, the func-
tion is even C∞ if m`

i(xi) = 0 and thus s`i(xi) = p`i , but
we shall not consider derivatives of an order exceeding the
maximum polynomial degree.

More precisely, given a point x ∈ (0, 1)d, a function
f ∈ V ` possesses continuous partial derivatives

∂if, 0 ≤ i ≤ s`(x), (1)

in a certain neighborhood of x. Here we use the partial
derivative operators

(∂if)(ξ) =
∂i1

∂ξi11
· · · ∂

id

∂ξidd
f(ξ1, . . . , ξd), (2)

where i = (i1, . . . , id). The following first example will
illustrate the discussion of notions and results.

Example 1. We construct the multivariate spline spaces
by considering tensor-products of univariate ones. Our
construction is based on the univariate spline spaces Spm
of degree p with (p+1)-fold boundary knots 0, 1 and dyad-
ically refined inner knots with knot multiplicities m =
[m(r)]r=1,...,R. In detail, the knots of Spm take the val-
ues κi = i

2R
, i = 1, . . . , 2R − 1, and their multiplicities are

equal to m(r) if they are created in the r-th step of the
dyadic refinement, i.e., for r = min{` : 2`κi ∈ Z}. For
instance, S2

[1,2] has the knots

(0, 0, 0, 1
4 ,

1
4 ,

1
2 ,

3
4 ,

3
4 , 1, 1, 1).

In particular, for dimension d = 2, we will use the spaces

D
(p1,p2)
(m1,m2) = Sp1m1

⊗ Sp2m2
.

More precisely, we select the sequence

V 1 = D
(1,2)
([1,1,1],[1,1,1]) V 2 = D

(1,2)
([1,1,1,1],[1,1,1,2])

V 3 = D
(3,2)
([1,1,1,2,1],[1,1,1,2]) V 4 = D

(3,2)
([3,3,3,3],[1,1,1,2])

V 5 = D
(3,2)
([3,3,3,3,2],[1,1,1,2]) V 6 = D

(3,3)
([3,3,3,3,2],[2,2,2,3,1])

V 7 = D
(3,3)
([3,3,3,3,2,2],[2,2,2,3,1])
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Figure 2: Left: Subdivision of the domain into patches with associated spline spaces. The line color visualizes the smoothness: red, blue and
green lines correspond to C0, C1, and C2-smoothness, respectively. Center and right for levels 2 and 6, respectively: Selected PB-splines
(visualized by the black points, which are the Greville points), shadows (represented by the knot line grid of the selected PB-splines) and
patches of lower levels (green).

which defines the partial ordering

1 ≺ 2 ≺ 4 ≺
5 ≺ 6 ≺ 7.≺3 ♦

3. The patchwork spline space

Besides the sequence of spline spaces, we choose an asso-
ciated sequence (π`)`=1,...,N of patches, which are mutually
disjoint open subsets of (0, 1)d. The closure of their union
is the entire unit cube, defining the domain

Ω = int

( N⋃
`=1

π`
)

= (0, 1)d

of the patchwork spline space. In principle, it is also possi-
ble to consider patches covering only a subset of the cube.
In fact, this is the case for the R-tail domains introduced
in Section 7, and all the results apply to these domains
also. For the sake of simplicity we will now consider the
entire cube.

Certain parts of the boundary ∂π` of each patch may
be shared with the boundaries of other patches. We define
the constraining boundary of level `,

Γ` =

`−1⋃
k=1

πk ∩ π`,

as those parts of the boundary ∂π` that are shared with
patches of lower levels. Note that the constraining bound-
ary may be empty. In particular, this is the case for ` = 1.

Example 1 (Continued). Fig. 2 (left) shows a subdivision
of the domain into seven patches that we will use to illus-
trate the construction of bivariate Patchwork B-splines.
The knot lines of the corresponding spline spaces define a
mesh on each patch. ♦

Definition. The patchwork spline space P (∆) on an open
subset ∆ ⊆ Ω consists of functions f ∈ C(∆) that possess
the following two properties:

(i) The restrictions of f to the restricted patches π` ∩∆
belong to the associated spline spaces V `,

f |π`∩∆ ∈ V `|π`∩∆, ` = 1, . . . , N.

(ii) The function f |
(π`∪πk)∩∆

has smoothness smax(`,k) at

any point x on the intersection of the boundaries of
the two restricted patches π` ∩∆ and πk ∩∆.

In particular we obtain the full patchwork spline space
P (Ω) when considering ∆ = Ω. ♦

Clearly, the patchwork spline space contains at least all
tensor-product polynomials of degree

min
`=1,...,N

p` = ( min
`=1,...,N

p`1, . . . , min
`=1,...,N

p`d),

restricted to the domain ∆.

Example 2. We consider function from the patchwork
spline space, f ∈ P (Ω), on the four patches shown in Fig.
3 with the associated biquadratic spline spaces

V 1 = V 2 = D
(2,2)
([1,1],[1,1]) and V 3 = V 4 = D

(2,2)
([2,2],[2,2]).

Note that the pictures in Fig. 3 show only the knot lines in
the interior of the patches, while the blue lines represent
their boundaries (which are also knot lines of multiplicities
1 and 2). The second property of the patchwork spline
space P (Ω) implies that f |

(π1∪π2)∩Ω
is C(1,1) at x = ( 1

2 ,
1
2 ),

while f |
(π3∪π4)∩Ω

is only C(0,0) at this point. Considering

the restriction to patches 1 and 3, we notice that f is C(0,2)

in x = ( 1
2 ,

5
8 ) and C(0,0) in x = ( 1

2 ,
3
4 ). ♦

Figure 3: Example 2 – Smoothness of f ∈ P (Ω) at various points.

4. Patchwork B-splines

We generalize Kraft’s selection mechanism [19] to ob-
tain a basis for the patchwork spline space. Each basis
B` contributes those tensor-product B-splines β`j that do
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not vanish on the patch π` but which do vanish on the
constraining boundary Γ`, i.e.,

K` = {j ∈ J ` : β`j |π` 6= 0 and β`j |Γ` = 0}. (3)

The selected B-splines of all levels form the Patchwork B-
splines (PB-splines)

K = {β`j : ` = 1. . . . , N ; j ∈ K`}. (4)

In addition, the union of all supports of selected level `
B-splines is said to be the shadow of the patch π`,

π̂` =
⋃
j∈K`

suppβ`j .

Example 1 (Continued). Figure 2 (center and right) vi-
sualizes the shadows and selected basis functions for the
patches 2 and 6 of our example. ♦

Throughout the paper we will introduce additional as-
sumptions (summarized in Fig. 4) that guarantee cer-
tain properties of the PB-splines. The first assumption
is needed for proving linear independence of PB-splines,
and for characterizing the space spanned by them:

Smoothness Monotonicity Assumption
(SMC)

Simple Shadow Compatibility
(S2C)

Constraining Boundary Alignment
(CBA)

Full Shadow Compatibility
(FSC)

Full Boundary Alignment
(FBA)

linear independence space characterization truncated PB-splines

Figure 4: Relations between assumptions and PB-spline properties.

Assumption. The patches and spline spaces possess the
property of Simple1 Shadow Compatibility: If the shadow
π̂` of a patch π` intersects a patch πk with level k, then
the first level is either equal to the second one, or the first
level precedes the second one,

π̂` ∩ πk 6= ∅ ⇒ ` = k or ` ≺ k. (S2C)

Thus, apart from its native patch, each shadow π̂` in-
tersects only patches of higher levels and with finer spline
spaces. We immediately obtain our first result:

Theorem 1. The Patchwork B-splines are linearly inde-
pendent on Ω if S2C holds.

The proof of linear independence is based on an idea
originally formulated in [19]. We keep the paper self-
contained by presenting its adaptation to PB-splines.

Proof. Consider a linear combination of the null function

0 =
∑
j∈K1

c1jβ
1
j (x) +

∑
j∈K2

c2jβ
2
j (x) + . . .+

∑
j∈KN

cNj β
N
j (x).

Due to S2C only the level 1 B-splines appearing in the
first sum take nonzero values for x ∈ π1. Due to their
linear independence on π1 we conclude that the associated
coefficients c1j all vanish, hence the first sum is not present.
We repeat this argument until all levels are exhausted.

1A more restrictive version will be introduced in Section 7 when
discussing tail hierarchies.

In addition to the linear independence of the PB-splines
on Ω, S2C also implies that the space spanned by them is
contained in the full patchwork spline space P (Ω), i.e.

spanK ⊆ P (Ω).

This fact follows from the definition of the latter space.

5. Homogeneous boundary conditions

Two additional assumptions will be needed to derive a
completeness result, which shows that the span of the PB-
splines is indeed the full patchwork spline space. The first
one, which introduces a condition on the location of the
constraining boundaries, will be analyzed in this section.

Assumption. The constraining boundaries Γ` of the
patches π` are aligned with the knot hyperplanes of the
corresponding spline spaces V ` for all levels, i.e.,

Γ` ⊂ Ξ`, (CBA)

where Ξ` ⊂ Ω is the union of the knot hyperplanes of the
level ` spline space. This assumption will be called the
condition of Constraining Boundary Alignment (CBA).

As a consequence, at least one coordinate xi of each
point x on the constraining boundary Γ` is present in the
associated knot vector that defines B`, i.e., it is one of the
knots in the i-th coordinate direction. Assumption CBA
generalizes the “weak condition” on the patch boundaries,
which has been introduced for hierarchical splines [28].

Next we introduce certain boundary conditions for each
patch. For any point x ∈ ∂π`, we consider the partial
derivatives with respect to all variables up to the order
that is determined by the smoothness of V ` at x,

(ϑ`xf) =
[
(∂if)(x)

]
0≤i≤s`(x)

.

These derivatives are collected in a tensor of order d and
dimension 1+s`(x), where 1 = (1, . . . , 1) ∈ Rd. A function
f is said to satisfy the homogeneous boundary conditions
with respect to the patch π` if this tensor vanishes at all
points of the constraining boundary, i.e., if

(ϑ`xf) = 0 for all x ∈ Γ`.

All spline functions f ∈ V ` that satisfy this condition form
the constrained spline space V `0 on the patch π`.

Lemma 2. The selected B-splines {β`j |π` : j ∈ K`} of

level ` form a basis of the constrained spline space V `0 |π`
on the patch π` if assumption CBA is satisfied.

The proof is postponed to the appendix.

6. PB-splines span the patchwork spline space

The second assumption, which is needed for the com-
pleteness result, guarantees the compatibility of the
smoothness for neighboring patches. For any point x ∈ Γ`

on the constraining boundary, we say that the i-th co-
ordinate direction is transversal with respect to Γ` if the
intersection of a sufficiently short line segment, with mid-
point x in this direction, and the constraining boundary
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Figure 5: Example 3 – Violation of SMC.

is a single point. More precisely, this is the case if there
exists ε > 0 such that

(x + (−ε,+ε)~ei) ∩ Γ`

is a single point, where the unit vector ~ei spans the i-th
coordinate axis. Intuitively speaking, the non-transversal
directions are locally aligned with the constraining bound-
ary, while the transversal ones are not.

Assumption. All patches and associated spline spaces
fulfill the Smoothness Monotonicity Condition (SMC):
The smoothness at any point x on the constraining bound-
ary of a patch π` in all transversal directions i does not
increase with the level. More precisely,

s`i(x) ≤ ski (x) for all x ∈ Γ` ∩ πk, (SMC)

if k < ` and the i-th coordinate direction is transversal
with respect to Γ` at x.

In other words, for any two neighboring patches we as-
sume that the smoothness of the higher level patch in all
transversal directions does not exceed that of the other
patch. SMC is always satisfied if we use uniform (i.e.,
level-independent) degrees p` = (p1, . . . , pd) and knot mul-
tiplicities for all spline spaces. It is also implied by the as-
sumption of Full Shadow Compatibility (FSC), which will
be introduced in Section 7.

Example 3. We consider four patches π1, . . . , π4 obtained
by dyadic subdivision of the domain [0, 1]2 and their asso-
ciated biquadratic spline spaces

V 1 = V 2 = D
(2,2)
([1],[1]), V

3 = D
(2,2)
([1,1],[2,2]), V

4 = D
(2,2)
([1,1],[1,1]),

see Fig. 5. SMC is violated at the point x = ( 1
2 ,

1
2 ) of the

constraining boundary Γ4 since s4
2(x) = 1 > s3

2(x) = 0. ♦

Now we characterize the span of the PB-splines:

Theorem 3. The Patchwork B-splines span the full patch-
work spline space P (Ω) if the assumptions S2C, CBA and
SMC are all satisfied.

Proof. We consider the union of the first L patches

∆L = int

( L⋃
`=1

π`
)
⊆ Ω, L = 1, . . . , N, (5)

which form the L-head domain. We use induction with
respect to L in order to prove

span

N⋃
`=1

{β`j : j ∈ K`} = P (∆L), for L = 1, . . . , N. (6)

This implies the desired characterization since ∆N = Ω.

Eq. (6) is satisfied for L = 1 as ∆1 = π1 and Γ1 = ∅,
hence spanB1|π1 = spanK1|π1 . Thus, any f ∈ P (∆1)
admits the representation

f(x) =
∑
j∈K`

c1jβ
1
j (x), x ∈ ∆1.

Now we assume that (6) holds for L and show that
the statement is satisfied for L + 1 as well. Consider
a function f ∈ P (∆L+1). The definition of the patch-
work spline space implies P (∆L+1)|∆L

⊆ P (∆L), hence
f |∆L

∈ P (∆L). Thus, we can use the induction hypothe-
sis to obtain a local representation,

f(x) =
L∑
`=1

∑
j∈K`

c`jβ
`
j(x), x ∈ ∆L, (7)

with respect to the L-head domain. We use the coefficients
c`j in (7) to define the auxiliary function

g(x) = f(x)−
L∑
`=1

∑
j∈K`

c`jβ
`
j(x), x ∈ ∆L+1 (8)

on the level L + 1-head domain. One may confirm that
ϑL+1
x g exists for all x ∈ ΓL+1, i.e., g has continuous deriva-

tives up to order sL+1(x). On the one hand, this is satisfied
for f by definition of the patchwork spline space P (∆L+1).
On the other hand, for the Patchwork B-splines β`j in (8),
this follows from Assumption SMC for the derivatives in
any transversal coordinate direction with respect to ΓL+1

and it is obtained for the non-transversal coordinate direc-
tions by differentiating along the constraining boundary.

By definition we have g|∆L = 0. Consequently, the
auxiliary function g satisfies homogeneous boundary con-
ditions (ϑL+1g)(x) = 0 for all x ∈ ΓL+1. Moreover,
the definition of P (∆L+1) and assumption S2C imply
g|πL+1 ∈ V L+1|πL+1 . Lemma 2 thus ensures that there
exists a representation

g(x) =
∑

j∈KL+1

cL+1
j βL+1

j (x), x ∈ πL+1. (9)

With S2C and g|∆L
= 0 it follows that this is valid for all

x ∈ ∆L+1. Thus, we may substitute (9) into (8) and solve
for f . This results in a linear combination of PB-splines
of the first L+ 1 levels,

f(x) =

L∑
`=1

∑
j∈K`

c`jβ
`
j(x)+

∑
j∈KL+1

cL+1
j βL+1

j (x), x ∈ ∆L+1,

which concludes the proof by induction.
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According to this result, the space spanned by the
PB-splines is actually independent of the ordering of the
patches, since it fully determined by the patches and the
spline spaces associated with them. However, only order-
ings that satisfy the assumptions of the Theorem can be
considered. Additionally, this result also allows to iden-
tify patchwork hierarchies that lead to nested patchwork
spline spaces: Keeping or enlarging all spline spaces while
keeping the patches leads to a patchwork spline space that
contains the original one.

7. Tail Hierarchies

Before introducing a truncation mechanism, we have to
establish a bottom-up definition of the PB-splines. For
this purpose we consider the R-tail domains

∆R = int

( N⋃
`=R

π`
)
⊆ Ω, R = 1, . . . , N.

Clearly we have that ∆N = πN and ∆1 = Ω. These
domains are associated with the R-tail (V `)`=R,...,N of the
spline space hierarchy and with the corresponding patches
(π`)`=R,...,N . We define PB-splines on these domains as
follows: Each patch π` ∈ ∆R is equipped with an R-tail
constraining boundary

Γ`,R = π` ∩
`−1⋃
k=R

πk, ` = R, . . . , N. (10)

Note that Γ`,R ⊆ Γ`, Γ`,` = ∅ and Γ`,1 = Γ`. The R-tail
PB-splines

KR =

N⋃
`=R

{β`j : j ∈ K`,R}

are obtained by suitably adapting the selection mechanism
(3) to the R-tail hierarchy,

K`,R = {j ∈ J ` : β`j |π` 6= 0 and β`j |Γ`,R = 0},

for ` = R, . . . , N . Note that K`,R ⊇ K` and K`,1 = K`.
These selected B-splines define the R-tail shadow of a
patch π` ⊆ ∆R,

π̂`,R =
⋃

j∈K`,R
suppβ`j .

In order to apply the results of the previous sections to the
R-tail hierarchy, we introduce another assumption, which
is similar to S2C:

Assumption. The R-tails possess Full Shadow Compati-
bility (FSC): If the R-tail shadow π̂`,R of a patch π` ⊆ ∆R

intersects a patch πk ⊆ ∆R with level k, then the first level
is either equal to the second one, or the first level precedes
the second one,

π̂`,R ∩ πk 6= ∅ ⇒ ` = k or ` ≺ k, (FSC)

for `, k = R, . . . , N and R = 1, . . . , N .

Note that FSC implies S2C and SMC. Indeed, S2C fol-
lows from the relation π̂`,1 = π̂` ⊆ π̂`,R. Furthermore, we
know that the R-tail shadow π̂`,` of a patch π` intersects
all neighboring patches of higher levels. Consequently, all
spline spaces of neighboring patches are nested if FSC is
satisfied. This implies SMC.

Assumption FSC enables us to extend the results of the
previous sections to the R-tail PB-splines.

Corollary 4. The R-tail PB-splines KR are linearly inde-
pendent on ∆R if FSC is satisfied. They span the partially
nested hierarchical spline space P (∆R) if additionally the
assumptions CBA and SMC are fulfilled.

Proof. S2C is satisfied on each subset ∆R if FSC holds.
Consequently we can prove the two parts of the corollary
by applying Theorem 1 and Theorem 3 (with a suitable
renumbering) to the R-tail hierarchy. Indeed, the assump-
tions CBA and SMC are automatically satisfied for these
hierarchies as well.

For future reference we note the following result.

Lemma 5. We assume that FSC is satisfied. The R-tail
PB-splines admit the backward recursive definition

KR = {βRj : j ∈ KR,R} ∪ SelR(KR+1), (11)

with respect to decreasing levels R = N, . . . , 1, that is based
on the selection operators, with the initial value KN+1 = ∅,

SelR(S) = {ϕ ∈ S : suppϕ ∩ πR = ∅}. (12)

Proof. We prove the identity

{β`j : j ∈ K`,R} = SelR(· · · Sel`−1({β`j : j ∈ K`,`}) · · · )
(13)

which implies the desired result. We note that

ϕ ∈ SelR(· · · Sel`−1(S) · · · )
⇔ (ϕ ∈ S and ϕ|πk = 0 ∀k = R, . . . , `− 1).

(14)

On the one hand, consider a B-spline β`j with j ∈ K`,R.

Clearly, its index satisfies j ∈ K`,`. Also, due to FSC,

suppβ`j ∩ πk = ∅, k = R, . . . , `− 1,

hence all selection operators SelR . . . ,Sel`−1 pick this func-
tion. On the other hand, take a B-spline β`j that belongs

to the set on the right-hand side in (13). Clearly, β`j |πk = 0

implies β`j |πk∩π` = 0 for k = R, . . . , ` − 1. Rewriting the
definition (10) of the R-tail constraining boundary

Γ`,R =

`−1⋃
k=R

π` ∩ πk (15)

confirms that the B-spline β`j belongs to the set on the
left-hand side in (13).
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Figure 6: Example 4 – Tail hierarchy (left), associated PB-splines
(center) and selection operator (right).

Example 4. We consider an (R+1)-tail domain consist-

ing of four patches ∆R+1 =
⋃N
`=N−3 π

` and an additional

patch πR = πN−4, see Fig. 6. The left picture shows
the (R+1)-tail domain (blue) and the additional patch
(green). In the center, we visualize the combined supports
of the corresponding (R+1)-tail PB-splines KR+1 (light
blue) and the Greville points of the basis functions, where
the four different colors correspond to the different lev-
els. Finally, we depict the supports of the selected basis
functions SelR(KR+1) as the light blue region in the right
picture. The hollow dots identify the Greville points of the
non-selected basis-functions. ♦

8. Truncation

We modify the recursive definition (11) of PB-splines
and introduce the truncated PB-splines (TPB-splines).
These functions are defined recursively, starting at the
highest level N .

The TPB-splines of level N are simply the PB-splines,

βNi = τNi i ∈ KN,N ,

and they form the set TN = {τNi : i ∈ KN,N}.
We now proceed to lower levels. When arriving at some

level R, we use the selection operator SelR, defined in (12),
to split the set of TPB-splines TR+1 into the two disjoint
subsets

SelR(TR+1) and nSelR(TR+1) = TR+1 \ SelR(TR+1).

The first set contributes directly to the levelR TPB-splines

TR = SelR(TR+1) ∪ {τRj : j ∈ KR,R}. (16)

It is complemented by adding the set of truncated B-
splines τRj , which are derived from the PB-splines βRj with

indices j ∈ KR,R, as follows:
The restriction of any B-spline βRj , j ∈ KR,R to the

(R+1)-tail domain ∆R+1 can be represented as a linear
combination of level R+ 1 truncated PB-splines,

βRj (x) =
∑

τ`i ∈TR+1

b`,Ri,j τ
`
i (x), x ∈ ∆R+1, (17)

with uniquely defined coefficients b`,Ri,j . These coefficients
are used to define the truncated B-splines of level R,

τRj (x) = βRj (x)−
∑

τ`i ∈SelR(TR+1)

b`,Ri,j τ
`
i (x), x ∈ Rd. (18)

Note that these functions also possess the piecewise repre-
sentation

τRj (x) =


βRj (x) x ∈ πR∑

τ`i ∈nSelR(TR+1)

b`,Ri,j τ
`
i (x) x ∈ ∆R+1, (19)

for x ∈ ∆R.
Similarly to the previous section we define index sets

for the truncated PB-splines of level R, which are derived
from PB-splines of level `,

T `,R={j ∈ J ` : τ `j ∈ TR}, henceTR=

N⋃
`=R

{τ `j : j ∈ T `,R}.

In order to prove that this construction is well-defined, i.e.,
that the local representation (17) exists and is unique, we
will show that the truncated PB-splines of level ` are a
basis of the patchwork spline space P (∆`).

Recall [12] that the representation of a function

f(x) =

N∑
`=R

∑
i∈T `,R

d`iτ
`
i (x), x ∈ ∆R,

with respect to the system of functions TR preserves the
coefficients of the local tensor-product representations

f(x) =
∑
i∈K`,`

c`iβ
`
i (x), x ∈ π`, ` = R, . . . , N, (20)

on the patches π` if d`i = c`i holds for all i ∈ T `,R.

Theorem 6. The equations (16)–(17) define non-negative
and linearly independent truncated PB-splines TR that
span (a superspace of) the patchwork spline space P (∆R)
and preserve the coefficients of the local tensor-product rep-
resentations of any function f ∈ P (∆R) if FSC, CBA and
SMC are satisfied.

The proof of the theorem is given in the appendix.
In particular, preservation of coefficients implies that the
TPB-splines form a partition of unity. While the theorem
ensures that P (∆R) is contained in the span of the TPB-
splines, it can be even shown that the two spaces are even
identical, but we postpone this to a future publication.

9. Generating feasible patchwork hierarchies

A collection of patches and associated spline spaces will
be called a feasible patchwork hierarchy if the correspond-
ing patchwork spline space P (Ω) satisfies FSC and CBA.
Consequently, this space can be equipped with a basis of
(T)PB-splines.

The algorithm is based on an infinite but countable cat-
alog V̂ = (V̂ k)k=0,1,... of candidate spline spaces

V̂ k = spanB̂k, k = 0, 1, . . . ,

which are defined on the d-dimensional unit cube. Each
space is spanned by a tensor-product spline basis

B̂k = (β̂kj )j∈Ĵ k ,

the elements of which are enumerated by an associated
index set Ĵ k. The index k of the catalog defines a natural
ordering, but it is not required that the spaces are nested.
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Algorithm 1 Generate a feasible patchwork hierarchy

Input: N polytopes σ and indices s(σ), a catalog V̂
Output: π1, . . . , πN with V 1, . . . , V N

1 for ` = 1 to N do
2 kmin ← |V̂|+ 1
3 for all polytopes σ ∈ Σ do
4 k ← s(σ);
5 while not[Feasible(k, `, σ) and V s(σ)⊆V k] do
6 k ← k + 1
7 end while
8 if k < kmin then
9 kmin ← k; σmin ← σ

10 end if
11 end for
12 π` ← σmin; V ` ← V̂ kmin

13 Delete the selected σmin from Σ.
14 end for

Example 5. In the bivariate case (d = 2), for given uni-
form degrees p = (p, p), we consider dyadically refined
spline spaces with maximum smoothness,

Mp
q,r = Sp[1,...,1︸︷︷︸

q times

] ⊗ S
p
[1,...,1︸︷︷︸
r times

].

We restrict ourselves to spaces of maximum refinement
level ν and impose a bound % on the difference of the
refinement levels, i.e., and max(q, r) ≤ ν and |q − r| ≤ %.
The latter bound controls the aspect ratio of the elements.
We define the catalog as

V̂ = (V̂s)s = (Mp
0,0,M

p
1,0,M

p
0,1,M

p
2,0,M

p
1,1,M

p
0,2, . . . ,M

p
ν,ν),

where we order the spaces lexicographically with respect
to (q + r, q). Fig. 7 shows an instance of the catalog. ♦

Algorithm 2 Feasibility check

1 function Feasible(k, `, σ)
2 for all i < ` with π̂i,i ∩ σ 6= ∅ do
3 if V i 6⊆ V̂ k then return false end if
4 end for
5 for all j ∈ Ĵ k with suppβ̂kj ∩ σ 6= ∅ do
6 safe ← true
7 for all i < ` with suppβ̂kj ∩ πi 6= ∅ do
8 safe ← false
9 for i′ = i to `− 1 do

10 if suppβ̂kj ∩ σ ∩ πi
′ 6= ∅ then

11 safe ← true; break
12 end if
13 end for
14 if safe == false then return false end if
15 end for
16 end for
17 return true
18 end function

The input of Algorithm 1 consists of a finite subdivision
Σ of the domain into N = |Σ| polytopes σ (which will
become the patches), with associated initial spline spaces

V̂ s(σ) from the catalog. We assume that the final space in
the catalog contains all other spaces in order to guarantee
that the algorithm succeeds in all cases. Moreover, it is
required that the entire boundary ∂σ of each polytope is
contained in the union of the knot hyperplanes Ξs(σ) of
the associated initial spline space. This will be denoted as
Full Boundary Alignment (FBA). In particular, it implies
that the polytopes have axis-aligned sides2.

The output is a sequence of patches π`, covering the
domain Ω, along with associated spline spaces V ` from
the given catalog. Each patch is one of the given polytopes
and the spline spaces V ` satisfy

V ` ⊇ V̂ s(σ) if π` = σ. (21)

Consequently, the space associated with a patch is a
superspace of the associated initial space. While this
already implies CBA, the algorithm additionally ensures
that FSC is satisfied.

The index ` in the main loop of
Algorithm 1 indicates the level
of the patch that we want to
add next to the sequence of to
patches. In order to determine
the polytope that will become
the patch π` we go through all
remaining polytopes in Σ and
select the smallest index of a
feasible spline space from our
catalog V̂ for each polytope.

Algorithm 2 analyzes the
feasibility of a spline space for a
polytope σ (see line 5 of Algo-
rithm 1): We first check com-
patibility with shadows π̂i,i for
all i < `, thereby ensuring the
R-tail shadow compatibility of
the already selected patches πi

for R = 1, . . . , `−1. Second, we
ensure R-tail shadow compati-
bility of σ = π` in lines 5 to 16.

It is guaranteed that Algo-
rithm 1 succeeds in generating
a feasible patchwork hierarchy
if the final space of the catalog
contains all other spaces, which
is satisfied for the catalog de-
scribed in Example 5.

Figure 7: The catalog V̂ from Ex-
ample 5 with % = 2 and ν = 4.

10. Adaptive surface fitting

We approximate point data fi ∈ R3, i = 0, . . . ,m, with
associated parameter values (ui, vi) ∈ [0, 1]2. The patch-
work hierarchy is initialized with a small number of patches
obtained by n-adic subdivision and relatively coarse spline
spaces with uniform knots. We alternate fitting and re-
finement steps until the maximum error is below the user-
defined threshold ε or the maximum number of iterations
is reached.

2For d=2, they are polygons with horizontal and vertical edges.
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Fitting step. We perform standard regularized least-
squares fitting as described, e.g., in [18], for generating
(T)PB-spline surfaces.

Refinement step. The adaptive refinement is guided by the
threshold ε and uses a Mark–Subdivide–Refine method:

• Mark: Patches containing points with an error ex-
ceeding the threshold ε are marked for refinement. If
a point belongs to several patches, we mark the one
with the lowest level.

• Subdivide: The marked patches are subdivided into
smaller ones by using n-adic subdivision.

• Refine: The initial spline space for each newly gen-
erated patch is such that it contains the space of the
original patch and satisfies FBA. Additionally, if a
newly generated patch contains points with an error
exceeding the threshold ε, we refine the initial spline
space further by applying n-adic knot refinement ei-
ther in u- or v-direction. The direction is chosen using
a local fitting approach. Finally, we apply Algorithm
1 to obtain a feasible patchwork hierarchy again.

Note that PB-splines and TPB-splines defined by the
same patchwork hierarchy give equivalent results, since the
spaces spanned by them are identical.

Example 6. We used the adaptive fitting algorithm for
generating the surface and the corresponding PB-spline
mesh in Fig. 1. We sampled 258 × 265 data points on a
non-uniform grid from the function

f(u, v) = 0.1(B0,7(u) (sin(120u) sin(2πu))

+B1,7(u) (2 sin(120u) sin(2πu))

+B7,7(u) (2− 2(1 + 0.4 sin(60v))| cos(2πv)|)),

with Bi,7(u) being the i–th Bernstein polynomial of de-
gree 7. The values of the function f vary between −0.07
and 0.2. We create an initial patchwork hierarchy that
consists of four patches, obtained from dyadic subdivi-
sion of the domain, and corresponding initial spline spaces

V = D
(2,2)
([1,1,1],[1,1,1]). Applying the adaptive mesh refine-

ment algorithm with ε = 5e−4 to the initial patchwork
hierarchy results in a feasible patchwork hierarchy with
7858 degrees of freedom, see Fig. 1, center and right. For
the corresponding fitting result we obtain a maximum er-
ror of 4.95e−4 and an average error of 1.03e−4. In or-
der to visualize the surface with a commercial tool, we
had to subdivide the PB-spline patches to classical tensor-
product spline patches. The resulting surface can be seen
in Fig. 1 on the left, where the black lines indicate the
boundaries of the B-spline patches. ♦

We present a second example and use it to com-
pare the approximation results for different spline con-
structions: PB-splines, hierarchical B-splines and tensor-
product splines.

Example 7. The function we considered in this example is
constructed in a similar manner as in Example 6, however,
we use univariate Bernstein polynomials in both directions

and a different coefficient matrix. We sampled 90, 000 data
points and for generating the PB-spline mesh we applied
the adaptive refinement algorithm with ε = 1e−3 to the
same initial patchwork hierarchy as before. The HB-spline
mesh is also obtained by automatic adaptive refinement,
whereas the tensor-product spline mesh has been manually
defined by imitating the behavior of the function to pre-
vent uniform refinement across the entire domain. Fig. 8
visualizes the approximating surface (for PB-splines only,
since all results look very similar), as well as the adap-
tive PB-spline mesh, the adaptive HB-spline mesh and the
manually generated tensor-product spline mesh. Table 1
reports the numbers of degrees of freedom and some er-
ror statistics. It is observed that by using PB-splines we
could not only save a significant percentage of degrees of
freedom, but we also obtained a slightly better fitting re-
sult. ♦

no. % maximum average
of dof of dof error error

tensor-product splines 2916 265 % 3.08e-3 1.5e-4
HB-splines 1860 169 % 3.08e-3 1.42e-4
PB-splines 1102 100 % 1.08e-3 1.32e-4

Table 1: Comparison of the results for Example 7.

Finally, we apply the surface approximation algorithm
to real data from a turbine blade of an aircraft engine
and compare again the results of PB-splines, truncated
hierarchical B-splines and tensor-product splines.

Example 8. We considered 210, 479 data points on the
airfoil of an aircraft engine, where the corresponding pa-
rameter values are obtained by Floater’s parameterization
method, see [8] and [7].

All three methods started from the initial spline space

V = D
(2,2)
([1,1,1],[1,1]) where we have roughly twice as many

knots in u- than in v-direction. The patchwork hierar-
chy evolved from a single patch covering the entire unit
square. We applied the adaptive fitting algorithm with
ε = 1e−6 and stopped when the maximum error was rea-
sonably small and approximately the same for all three
results. This resulted in 7 refinement steps for PB-splines,
6 steps for THB-splines and 5 steps for tensor-product
splines.

Table 2 compares the number of degrees of freedom with
respect to the PB-splines, the maximum error, the average
error and the percentage of points with an error smaller or
equal to ε for the three methods. The results emphasize
once more the advantage of using adaptive spline construc-
tions. When comparing PB- and THB-splines we notice
that we could still save some degrees of freedom by using
the PB-splines, although the difference is not as significant
as in Example 7.

Fig. 9 shows the resulting PB-spline mesh together with
close-up views of the PB- and the THB-spline mesh. We
also present the result of a reflection line analysis of the
PB-spline surface. Additionally, we intersected the differ-
ent approximation surfaces with a plane, which is indicated
by the red rectangle around the blade, and zoomed into the
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Figure 8: From left to right: surface obtained for Example 7, automatically generated mesh (patches and knot lines) for PB-splines, auto-
matically generated mesh for HB-splines and user-defined mesh for tensor-product splines.

no. % maximum average % of data
of dof of dof error error below ε

tensor-product
splines 33540 278% 5.49e-5 1.60e-6 89.2%

THB-splines 13682 114% 3.11e-5 5.82e-7 92.1%
PB-splines 12050 100% 5.79e-5 4.05e-7 94.5%

Table 2: Comparison of results for Example 8.

region near the leading edge, using a frontal view. The in-
tersection curves are depicted in Fig. 9 on the right, where
the red, green and blue curve correspond to PB-, THB-
splines and tensor-product splines, respectively. The gray
curve represents a stripe of the original triangulated point
data that was obtained by cutting it with two parallel
planes.

These intersection curves reveal significant differences
between the three surfaces. While both the THB- and
the tensor-product spline surface oscillate in the vicinity
of the leading edge, the PB-spline surface follows the trian-
gulated data quite well. As a possible explanation we note
that – even if THB- and PB-splines use a similar amount
of degrees of freedom – the PB-spline construction seems
to allocate them more efficiently to the areas where they
are required. ♦

11. Conclusion

We generalized the concept of hierarchical spline con-
structions by introducing (T)PB-splines. In particular,
this new framework increases the flexibility of the avail-
able refinement strategies. For instance, it allows the in-
sertion of vertical vs. horizontal knot lines in different
areas of the bivariate (parameter) domain. If the result-
ing patches and spline spaces form a feasible patchwork
hierarchy, then the corresponding (T)PB-splines are a ba-
sis of the patchwork spline space P (Ω). The independent
refinement strategies lead to a reduced number of degrees
of freedom compared to hierarchical B-splines or classical
tensor-product splines. Moreover, when performing data
fitting we were able to improve the quality of the approx-
imation surface by using PB-splines.

Future work will complete the presented theory by in-
vestigating the algebraic completeness and by further char-
acterizing the space spanned by the TPB-splines. For in-

dustrial applications it is necessary to provide an efficient
implementation and therefore, we will elaborate on data
structures and algorithms in greater detail. Furthermore,
error estimators for guiding anisotropic refinement can be
considered. Subsequent research topics might include the
application of the presented construction to isogeometric
analysis and the use of (T)PB-splines for geometric design,
as well as a detailed comparison of PB- and truncated PB-
splines with respect to their numerical properties, analo-
gous to the comparison between HB- and THB-splines in
[10].
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Appendix

Proof of Lemma 2. The constraining boundary Γ` =⋃
ϕ∈F` ϕ consists of facets ϕ from a certain facet set

F`, due to CBA. Each facet ϕ has some dimension
δ ∈ {1, . . . , d− 1}. After a suitable reordering of the coor-
dinates, it takes the form

ϕ = [κ1
j1 , κ

1
j1+1]× · · · × [κδjδ , κ

δ
jδ+1]×{κδ+1

jδ+1}× · · · × {κdjd}

for certain indices j1, . . . , jd, with κijk being the jk-th knot

of the knot vector in direction i of the space V `.
First, we show that the selected B-splines belong to the

constrained spline space. For any index j ∈ K` it follows
from the definition of K` that the B-spline β`j vanishes on
the constraining boundary. Thus it satisfies the homoge-
neous boundary conditions with respect to the patch π`

since the B-spline has smoothness s`(x).
Second, we show that we need only selected B-splines

for representing the restriction f |π` of any function from
the constrained spline space V `0 . Clearly, any f ∈ V `0 ⊆ V `
possesses a representation

f(x) =
∑
j∈J `

suppβ`j∩π
` 6=∅

c`jβ
`
j(x), x ∈ π`, (22)
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Figure 9: Approximation of airfoil data (Example 8). From left to right: The automatically generated PB-spline mesh, details of the PB- and
THB-spline mesh, the PB-spline surface (entire blade with reflection lines), intersection lines for PB- (red), THB- (green) and tensor-product
splines (blue) together with a stripe of the triangulated data (gray).

with certain real coefficients c`j . Consider a B-spline β`k
with an index k ∈ J ` \ K` and suppβ`k ∩ π` 6= ∅. Conse-
quently, there exists a facet ϕ ∈ F` such that β`k|ϕ 6= 0.
Without loss of generality we assume that the dimension
of ϕ is maximal, i.e., it is chosen such that it is not con-
tained in any other facet ϕ′ ∈ F`. The knot vectors of
the tensor-product spline space V ` induce a subdivision
of (0, 1)d into cells (axis-aligned boxes). There exist cells

ζ ⊆ π` and ζ ′ ⊆ (0, 1)d \ π` which intersect in ϕ, i.e.,
ϕ = ζ ∩ ζ ′, since the dimension of ϕ is maximal.

The functions f |ζ and 0|ζ′ have contact on ϕ as de-
scribed in Definition 2.3 of [23], as f satisfies homogeneous
boundary conditions on ϕ ⊆ Γ`. We consider the local rep-
resentations of these two functions on the cells ζ and ζ ′,

f(x) =
∑
j∈J `

suppβ`j∩ζ 6=∅

c`jβ
`
j(x), x ∈ ζ, and 0 =

∑
j∈J `

suppβ`j∩ζ
′ 6=∅

0 β`j(x
′), x′ ∈ ζ ′.

The index sets of both sums include k as the B-spline β`k
takes non-zero values on ϕ = ζ ∩ ζ ′. We use the Contact
Characterization Lemma [23, Lemma 2.4] to conclude that
c`k = 0. Thus, only B-splines β`j with j ∈ K` contribute
to the representation in (22), as the remaining terms in
the sum have zero coefficients. Finally, we note that the
selected B-splines form a basis as B-splines possess the
property of local linear independence (i.e., they are linearly
independent on any open subset). �

Proof of Theorem 6. We use the induction principle for
decreasing values of the level `, starting at ` = N , until
we arrive at ` = R. For each level ` we shall prove the
following six facts:

(H0) T ` is well defined by equations (16)-(17).

(H1) T ` is linearly independent on ∆`.

(H2) spanT ` ⊇ P (∆`) = spanK`.

(H3) The functions in T ` are non-negative.

(H4) We have suppτki ⊆ suppβki for all τ `i ∈ T `.

(H5) The representations of functions with respect to T `

preserve the coefficients of the local tensor-product
representations of any function f ∈ P (∆`).

All statements are true for ` = N since TN = KN . In the
induction step we assume that they are valid for ` = L+ 1
and prove that the statements are true for ` = L as well.

Proof of (H0). The local representation

βLi (x) =
∑

τ`j∈TL+1

b`,Lj,i τ
`
j (x), x ∈ ∆L+1,

exists, since spanTL+1 = spanKL+1 by the induction hy-
pothesis (H2) and βLi ∈ P (∆L+1) for i ∈ KL,L due to
FSC and the definition of P (∆L+1). Therefore, TL is well
defined by equations (16)-(17).

Proof of (H1). We consider the representation

0 =
∑

i∈KL,L
cLi τ

L
i (x) +

∑
τ`j∈SelL(TL+1)

c`jτ
`
j (x), x ∈ ∆L,

of the null function. When restricted to patch πL we get

0 =
∑

i∈KL,L
cLi β

L
i (x), x ∈ πL,

since the functions in SelL(TL+1) vanish on πL, according
to the definition of the selection mechanism. Therefore,
the coefficients cLi are all zero since the functions βLi for
i ∈ KL,L are non-zero and linearly independent on πL.
The remaining functions τ `j ∈ SelL(TL+1) are linearly in-

dependent on ∆L+1 according to the induction hypothesis
(H1), hence the coefficients satisfy c`j = 0 as ∆L+1 ⊆ ∆L.

Proof of (H2). Recall that

KL = {βLi : i ∈ KL,L} ∪ SelL(KL+1),

according to Lemma 5. We prove that functions from both
subsets of KL admit a representation with respect to TL.
This is clear for βLi with i ∈ KL,L, since solving (18) for
βLi leads to

βLi = τLi +
∑

τ`j∈SelL(TL+1)

b`,Lj,i τ
`
j .

The proof for functions β`j ∈ SelL(KL+1) from the second

subset requires more work: We know that β`j ∈ P (∆L+1)

by Corollary 4 and SelL(KL+1) ⊆ KL+1, thus we can use
the induction hypothesis (H2) and find a representation

β`j(x) =
∑

τmi ∈TL+1

bm,`i,j τ
m
i (x), x ∈ ∆L+1.

For any non-zero coefficient bm,`i,j in this representation, the

associated basis functions satisfy suppβmi ⊆ suppβ`j , due
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to the induction hypothesis (H5) and the refinement prop-
erty of B-splines. We now use the induction hypothesis
(H4) to conclude that τmi ∈ SelL(TL+1) if bm,`i,j 6= 0, since

suppτmi ⊆ suppβmi ⊆ suppβ`j and β`j ∈ SelL(KL+1).

Moreover, the definition (12) of SelL implies that β`j van-

ishes on πL. Combining both observations gives the rep-
resentation

β`j(x) =
∑

τmi ∈SelL(TL+1)

bm,`i,j τ
m
i (x), x ∈ ∆L.

Consequently, these functions are contained in
span(SelL(TL+1)) ⊂ spanTL.

Proof of (H3). The induction hypothesis for (H3) implies
that all functions τ `j ∈ SelL(TL+1) are non-negative. In

order to establish this property for τLi we consider the
piecewise representation (19). On the one hand, the func-
tion τLi is non-negative on πL since

τLi |πL = βLi |πL ≥ 0.

On the other hand, it is a non-negative linear combination
of non-negative functions on ∆L+1. Indeed, the functions
are non-negative due to the induction hypothesis (H3),
and the coefficients are non-negative due to (H5) and the
B-spline refinement properties.

Proof of (H4). It is implied by the induction hypothesis
(H4) for k > L. For k = L it follows immediately by
comparing the representations (19) and (17) of τLi and
βLi , respectively, due to the induction hypotheses (H3) and
(H5). Note that the B-spline refinement properties again
ensure non-negative coefficients.

Proof of (H5). Finally, we show the property of preser-
vation of coefficients. Therefore, we consider a function
f ∈ P (∆L) which has representations (20) for R = L.
Due to (H2) we may represent it as

f(x) =

N∑
`=L

∑
i∈T `,L

d`iτ
`
i (x)

=
∑

i∈KL,L
dLi τ

L
i (x) +

∑
τ`i ∈SelL(TL+1)

d`iτ
`
i (x),

(23)

for x ∈ ∆L. First we prove the preservation property for
the coefficients of level L. Restricting (23) to the patch
πL gives the sum

f(x) =
∑

i∈KL,L
dLi τ

L
i (x) =

∑
i∈KL,L

cLi β
L
i (x), x ∈ πL,

where only functions τLi contribute, according to (19).
Comparing this representation with (20) confirms dLi = cLi
for all i ∈ KL,L.

The preservation property for the coefficients of higher
levels remains to be shown. On the one hand, when con-
sidering the restriction of f to ∆L+1 we obtain that

f(x) =
∑

i∈KL,L

∑
τ`j∈nSelL(TL+1)

dLi b
`,L
j,i τ

`
j (x)+

∑
τ`j∈SelL(TL+1)

d`jτ
`
j (x), x ∈ ∆L+1,

(24)

by using the piecewise representation (19) of τLi . On the
other hand, we invoke the induction hypothesis (H5) and
conclude that the coefficients of the representation

f(x) =
∑

τ`i ∈TL+1

d̂`iτ
`
i (x), x ∈ ∆L+1, (25)

possess the preservation property, i.e. d̂`i = c`i for all
i ∈ K`,L+1, ` = L + 1, . . . , N . Since TL+1 is the disjoint
union of SelL(TL+1) and nSelL(TL+1), and due to the lin-
ear independence, we compare the coefficients in (24) and
(25), which finally confirms that

d`i = d̂`i = c`i , if τ `i ∈ SelL(TL+1)

for ` = L+ 1, . . . , N . �
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[12] C. Giannelli, B. Jüttler, and H. Speleers. Strongly stable bases
for adaptively refined multilevel spline spaces. Adv. Comput.
Math., 40(2):459–490, 2014.

[13] G. Greiner and K. Hormann. Interpolating and approximating
scattered 3D-data with hierarchical tensor product B-splines. In
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