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Abstract

The objective of Isogeometric Segmentation is to generate a decomposition of a solid, given in boundary representation,
into a collection of a relatively small number of base solids, which can easily be subdivided into topological hexahedra.
This can be achieved by repeatedly splitting the solid. In each splitting step, one chooses a cutting loop, which is a cycle
of curves around the boundary of the solid, and constructs a cutting surface that splits the solid into two simpler ones.
When only hexahedra or pre-defined base solids are left this process terminates.

The construction of the cutting surface must ensure that two essential properties are fulfilled: the boundary curves of
the surface interpolate the previously constructed cutting loop and the surface neither intersects itself nor the boundary
of the solid. A novel method for generating the cutting surface is presented in this paper. The method combines two
steps: First we generate an implicit guiding surface, which is subsequently approximated by a trimmed spline surface in
the second step.

Keywords: Isogeometric analysis, segmentation, trimmed surface fitting, implicit guiding surface, parameterization,
collision avoidance

Figure 1: From left to right: Vase-shaped object with non-planar faces seen from two different viewing directions, implicit guiding surface,
parameterized surface patch, and its automatically created parameter domain.

1. Introduction

Since its introduction by T.J.R. Hughes et al. in 2005
[1], the framework of isogeometric analysis has attracted
rapidly growing attention from the numerical analysis and
the geometric modeling communities. The underlying
idea, namely to combine finite element analysis with ge-
ometric design by reusing the same basis functions, has
led to significant improvements of the interaction between
the representations used in Computer-Aided Design and in
Numerical Simulation, see [2] for more information. The
current state-of-the-art in this field is captured by the two
recent special issues of influential journals [3, 4].

With the growing interest in isogeometric analysis, it
was soon noticed that the realization of its potential ad-
vantages requires to address new challenging problems.

A prominent example is the need to develop techniques
for creating NURBS-based domain parameterizations from
boundary-represented CAD data, as the resulting NURBS
representations provide the basic description of geometric
data for isogeometric analysis, cf. [5].

These parameterizations may be classified into single–
and multi-patch representations. The construction of sin-
gle patch spline models from boundary data has been ad-
dressed by numerous publications. We briefly mention
some of them: Gravesen et al. address the challenge of cre-
ating a regular single-patch domain parameterization from
boundary data [6]. A method for volumetric parameteri-
zation and trivariate B-spline fitting using harmonic map-
pings has been described by Martin et al. [7] for objects of
cylindrical topology. Zhang et al. [8] describe a construc-
tion of a solid T-spline parameterization for genus zero
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objects from triangulated boundary data. This method
has later been extended to solids possessing an arbitrary
topological genus [9].

Although it has some benefits, the use of a single patch
imposes severe constraints on the topology of the domain.
Algorithms for creating multi-patch representations, that
provide increased flexibility, are therefore of vital inter-
est. Typically, such algorithms consist of two steps: First
the domain is subdivided into a collection of topologi-
cal hexahedra. Second, one constructs a spline param-
eterization for each of these blocks. In order to ben-
efit from the potential advantages of isogeometric anal-
ysis, one should construct segmentations into relatively
few hexahedral patches. This is quite different from the
usual approach to hexahedral mesh generation, which has
been studied in the context of the classical finite element
method, see e.g. [10] and the references cited therein.

Parameterization techniques for multi-patch domains
have been studied by Xu et al. [11] using variational meth-
ods. A combinatorial approach to planar multi-patch do-
mains, which is based on a complete enumeration of the
possible patch layouts, has been described recently in [12].
Suitable spline spaces for multi-patch domains have been
analyzed in [13, 14].

The problem of decomposing a domain into a small num-
ber of topological hexahedra, which are suitable for spline
parameterizations, has been called the isogeometric seg-
mentation problem in [15]. One may distinguish between
two approaches:

The first one uses splines on polycube domains, see e.g.
[16, 17]. The parameterization algorithm first generates a
polycube domain (i.e., a collection of cubes) that resembles
the given solid object, and constructs a parameterization
by considering a deformation that transforms the domain
into the solid. Al Akhras et al. combine polycubes with
pants decomposition of the boundary surface to subdivide
the given solid into a collection of cuboids [18]. Clearly, the
polycube-based approach is quite powerful but has some
difficulties when dealing with features (sharp edges) on
the boundary. This problem has been addressed recently
in [19].

The second approach, which has been established in a
series of papers [15, 20, 21], is based on iterated splitting
of the initial solid using cutting surfaces. This surface is
obtained from a cutting loop, which is a cycle of curves
on the solid’s boundary surface. While the selection of the
loop and the construction of its curve segments is now well
understood, the actual construction of the cutting surface
has not yet been investigated.

The current paper focuses on this problem, which is
an essential ingredient of the isogeometric segmentation
pipeline described in [22]. Given a three-dimensional solid
in boundary representation as a collection of trimmed
NURBS surfaces, and a cutting loop, we generate a rep-
resentation of the cutting surface as a trimmed NURBS
surface patch. Its boundary interpolates the given cutting
loop, but its interior must not intersect the boundary of

the solid.
Two different techniques will be combined in order to

solve this problem. First we construct an implicit spline
surface, that roughly interpolates the cutting loop and
stays away from the other parts of the solid’s boundary.
This surface is obtained using methods for implicit spline
surface fitting. In the second part we use techniques for
trimmed spline surface fitting to obtain a cutting surface
that simultaneously approximates the given cutting loop
in the boundary and the implicit guiding surface in the
interior.

Implicit curves and surfaces are a well-established tool
for geometry reconstruction [23, 24, 25, 26]. More recently,
Wang et al. use implicit PHT-splines to reconstruct curves
and surfaces [27], while Pan et al. [28] employ a low-rank
tensor approximation technique to reduce the complexity
of the required computer memory.

Spline surface fitting addresses the problem of geometry
reconstruction using parametric curves and surfaces, see
the surveys [29, 30] for more information. In particular,
techniques for spline surface fitting to implicit surfaces are
of interest. Related work includes a paper by Wurm et al.
[31], who find a tensor-product spline surface representa-
tion of a given algebraic surface by minimizing a non-linear
objective function.

The remainder of this article consists of four major
parts. First we give a detailed explanation of the cut-
ting problem and introduce the notions that will be used
throughout the paper in Section 2. We then formulate
a suitable constrained optimization problem in Section 3,
which allows us to obtain an implicit guiding surface. As
the next step we discuss the construction of a parametric
representation of the cutting surface in Section 4. Finally
we present several computational results that illustrate our
approach in Section 5.

Figure 1 visualizes the whole procedure: The left two
pictures show a three-dimensional solid and a given cut-
ting loop1, cf. Section 2. The picture in the center de-
picts an implicit guiding surface and the last two pictures
show the parametrized cutting surface and its automati-
cally generated trimming-loop.

2. Preliminaries

We consider the problem of decomposing a d-
dimensional simply connected domain (a solid object),
which is given in boundary representation into two smaller
simply connected domains for d = 2, 3. More precisely we
are given a list of n facets

Fi : Ωi ⊂ [0, 1]d−1 → Rd for i = 1, . . . , n,

1Note that the cutting loop in this example does not induce a
meaningful segmentation of the solid. It was artificially chosen in
order to illustrate the required properties of cutting surfaces. This
comment also applies to the cutting data in Figs. 5, 6 and 12. In
contrast, real cutting loops have been used in Figs. 13 and 15.
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Figure 2: Left: A 2D solid with five facets (curve segments) and
one highlighted ridge (vertex). Right: A 3D solid with five facets
(trimmed surface patches) and two highlighted ridges (vertex and
edge).

such that
⋃

i Fi(Ωi) is the boundary of a solid object S in
Rd. We distinguish between a parameterized facet Fi and
its geometric locus Fi = Fi(Ωi). For simplicity we use the
notion facet for both of them.

In the two-dimensional case (d = 2), the parameter do-
mains Ωi are intervals and the associated facets Fi are
simply segments of planar curves. The solid S is the pla-
nar domain that is bounded by these segments.

A three-dimensional solid (d = 3) is a domain in R3 that
is bounded by surface patches Fi. More precisely, one con-
siders trimmed surface patches, as the parameter domains
Ωi can be general solids in the plane, i.e., planar domains
which are bounded by a curve polygon (see Fig. 2).

The non-empty intersections Fi ∩Fj ⊂ Rd for i 6= j will
be called ridges. In the planar case (d = 2), the ridges
are the start- and end-points of the boundary curves and
therefore vertices. The ridges can be either edges or ver-
tices for dimension d = 3, see Fig. 2.

In order to decompose the given solid into two smaller
ones, we need to construct two new lists of facets F `

i (Ω`
i),

` = 1, 2, with the following properties:

• The facets are represented by parameterizations, i.e.,
F `
i : Ω`

i ⊂ [0, 1]d−1 → Rd for i = 1, . . . , n`.

• Each list of facets
⋃

i F`
i forms the boundary of a sim-

ply connected solid object S` in Rd.

• The input solid S is the disjoint union of the two
newly generated ones, i.e., it satisfies S = S1 ∪ S2

and (S1)◦ ∩ (S2)◦ = ∅.

Intuitively speaking, we are cutting the solid S into two
smaller solids S1 and S2.

In addition to the properties listed above, we assume
that exactly one facet needs to be generated in order to
cut the given solid. More precisely, exactly one facet of
each solid S` is not contained in one of the given facets.
The newly generated facet will be called the cutting facet
C. It is also called cutting curve and cutting surface for
dimension d = 2 and d = 3, respectively.

Without loss of generality, the first facet of the two sub-
solids is assumed to be the cutting one, i.e., it satisfies

Ω1
1 = Ω2

1 and F 1
1 = F 2

1

while the remaining facets fulfill

∃k : F `
i (Ω`

i) ⊂ Fk(Ωk) for i > 1.

We will construct the cutting facet C = C(Ω),

C : Ω→ Rd, where Ω = Ω1
1 = Ω2

1 and C = F 1
1 = F 2

1

from given cutting data D = (L,~t ), which is a pair consist-
ing of boundary ridges L and associated tangent vectors
~t : L→ Rd, see Figs. 3 and 4.

The boundary ridges specify the boundary of the cutting
facet:

• In the planar case we use two distinct vertices on
the boundary, which can be either existing vertices
or newly created ones, see Fig. 3. The latter ones will
be called auxiliary vertices.

• A closed loop L of at least three curve segments on
the boundary, meeting in vertices, is required for di-
mension d = 3, see Fig. 4. The loop must not intersect
itself. Again, we use either existing or newly created
(auxiliary) segments and vertices.

The tangent vectors control the tangent vector resp. the
tangent plane of the cutting facet along the boundary. For
each point x ∈ L, we specify a tangent vector ~t (x) that
points to the interior of the solid S. For dimension d = 3,
it is required that the vectors vary smoothly along the
curve segments and define a consistent tangent plane at
the vertices.

It should be noted that the cutting data may be required
to satisfy additional assumptions, which are needed by the
overall segmentation algorithm, see [15, 20]. For instance,
the two points of L are not allowed to lie on the same
boundary segment for dimension d = 2, and the loop L
must not visit any facet more than once for dimension
d = 3. We do not discuss these assumptions in more de-
tail, since they are not relevant for the construction of the
cutting facet.

The cutting facet C has to satisfy the following condi-
tions:

• Boundary interpolation: C(∂Ω) = L,

• Boundary tangent interpolation: ~t (C(u)) is contained
in the tangent plane of C at C(u) for u ∈ ∂Ω,

• No collision with the boundary: C(Ω◦) ⊂ S◦,

• Regularity: C is injective and regular (in particular,
it does not intersect itself).
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Figure 3: Top: Two-dimensional solid with valid cutting data and
a suitable cutting curve. Bottom: Splitting into two sub-solids
along the cutting curve.

Figure 4: Top: Three-dimensional solid with valid cutting data and
a suitable cutting surface. Bottom: Splitting into two sub-solids
along the cutting surface.

In the case d = 2, the cutting facet C is a curve segment,
that connects two given points on

⋃
i Fi, while staying

inside the domain bounded by the facets Fi, see Figure 3
(top). For dimension d = 3 the cutting facet is a surface
patch whose boundary coincides with L. Again C stays
inside the domain bounded by the facets. In every point
x on ∂p, the tangent plane of C contains the given vector
~t (x), see Figure 4 (top).

Given a d-dimensional solid given by its boundary facets
Fi(Ωi), and cutting data D, we present a novel method
that generates a cutting facet C. For the planar case, this
problem has already been dealt with in [21]. In this paper,
the authors proposed a method based on the minimization
of certain penalty functionals, that led to satisfying results.
In principle, it would be possible to adapt this method to
the three-dimensional case. However, the computational
effort is rather high. Therefore we introduce an alternative
algorithm that is simultaneously suitable for dimensions
d = 2 and d = 3. We summarize it in the following

Algorithm: Cutting surface generation

Input: Solid S and cutting data D.

1. Find an implicit guiding curve / surface.

2. Parameterize the guiding curve / surface.

Output: parameterized cutting curve / surface

Depending on the dimension d, we are looking either for
a curve or for a surface. For simplicity, we will always refer
to surfaces, independently of the dimension d. Similarly,
we will always refer to L as the cutting loop, even if this
is not accurate for d = 2.

3. Implicit guiding surface

The cutting loop L separates the boundary ∂S into two
simply connected, disjoint pieces b and b, i.e., ∂S \ L =
b ∪ b. (We do not consider solids whose boundary is not
split into two components by a cutting loop, such as the

horned sphere. These solids are not likely to occur in CAD
applications.) We obtain the guiding surface with the help
of a level set function, that takes positive values on b,
negative values on b and vanishes on the loop L.

We need to transform the given cutting data into suit-
able boundary data for the level set function. To do so,
we compute a normal vector ~n (x) for each point x ∈ L.

In the planar case, we simply rotate the vector ~t (x)
by π/2 towards b, see Fig. 5, left. In the case d = 3, we
compute the tangent plane at all points x ∈ L and pick the
normal vector that points towards b, see Fig. 5, right. Note
that we assumed a consistent distribution of the tangent
vectors, thereby ensuring the existence of a tangent plane
at all points of the cutting loop (including vertices).

Figure 5: Boundary data for the construction of the guiding surface
for d = 2 (left) and d = 3 (right).

The guiding surface is defined by a level set function
that solves the cutting problem: Find f : Ω ⊂ Rd → R
such that 

f(x) = 0, ∀x ∈ L,
∇f(x) = ~n (x), ∀x ∈ L,
f(x) > 0, ∀x ∈ b,
f(x) < 0, ∀x ∈ b.

(CP)

In order to make this accessible to a numerical solution,
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we perform a discretization. We choose d-variate tensor-
product B-splines (φi)i∈I , where I is some index set, which
are defined in the bounding box of the solid S. More pre-
cisely, we use cubic splines with open knot vectors and
uniform inner knots, the number of which is specified by
the user (typically either 3 or 7 knots per direction in our
examples). The discretized level set function takes the
form

f∗(x) =
∑
i∈I

φi(x)ci (1)

with unknown scalar coefficients ci. They are found by
solving the discretized cutting problem,

f∗(x) ≈ 0 ∀x ∈ L∗

∇f∗(x) ≈ ~n (x) ∀x ∈ L∗

f∗(x) ≥ δ ∀x ∈ b∗

f∗(x) ≤ −δ ∀x ∈ b∗.

(DCP)

The influence of the user-specified discretization parameter
δ > 0 will be studied later in Section 5.

The discretized sets L∗, b
∗

and b∗ are created by sam-
pling points on the curves and surfaces, respectively. We
exclude a small strip around the loop L when generating
b
∗

and b∗.
Neither (CP) nor (DCP) have unique solutions. There-

fore we introduce an optimization problem, that allows us
to identify the optimal solution with respect to a combi-
nation of certain quality measures,

F (c) = λintFint(c)+λtanFtan(c)+λregFreg(c)→ min (2)

where c = (ci)i is the vector of coefficients, see (1), and
the parameters λint, λtan, λreg are positive weights. They
control the influence of the different contributions, cf. Sec-
tion 5.

The first quality measure

Fint(c) =
∑
x∈L∗

f∗(x)2

represents the approximate interpolation constraint for the
cutting loop, and the second one

Ftan(c) =
∑
x∈L∗

‖∇f∗(x)− ~n (x)‖2

is used to constrain the normal vectors (and hence the tan-
gent planes of the level set surface) along the cutting loop.
Additionally we regularize the solution by considering the
functional

Freg(c) =

∫
[0,1]d

∑
i,j

(
∂2

∂xi∂xj
f∗(x)

)2

dx, (3)

that is related to the curvature of the level set surface.
We obtain the unknown coefficients by solving the Reg-

ularized + Discretized Cutting Problem
F (c)→min

subject to f∗(x) ≥ δ ∀x ∈ b∗

and f∗(x) ≤ −δ ∀x ∈ b∗
(RDCP)

Lemma 1. The regularized + discretized cutting problem
RDCP has a unique solution if the set of feasible points
(which is defined by the inequality constraints) is non-
empty.

Proof. The objective function is convex if the weights λint,
λtan, λreg are all positive, [see 26, Proposition 1]. Thus we
obtain a convex optimization problem, since the inequality
constraints are linear.

Minimization of the functional (2) requires the evalua-
tion of the integral (3) multiple times. For a fast computa-
tion we exploit the tensor-product structure of the spline
function f∗ in order to precompute univariate integrals of
B-spline basis functions. The evaluation of (3) can then
be performed by a fast matrix-vector multiplication.

In our examples, we solved RDCP using the fmincon
function of MatlabTM. Typical problems, where the num-
ber of spline coefficients varies between 100 (for curves) to
1000 (for surfaces), can be solved within a few seconds or
minutes on standard hardware.

An empty set of feasible points results if the number of
knots, which is used to define the tensor-product splines
(φi)i∈I , is too small. We increase the number of knots by
dyadic refinement until RDCP possesses solutions. Addi-
tionally we increase the number of knots if the errors

f∗(x) and ||∇f∗(x)− ~n (x)||, x ∈ L∗,

exceed a user-defined tolerance. Recall that the values
f∗(x)/||∇f∗(x)|| estimate the distance of the point x to
the level set surface f∗ = 0. We may omit the denomi-
nator, since the gradients of f∗ approximate unit normal
vectors along the loop.

Figure 6 shows several instances of guiding curves and
surfaces. All curves and surfaces are represented as zero
level sets of cubic spline functions.

The zero level set of the function f∗ guides the con-
struction of the cutting surface. The latter surface is rep-
resented by a trimmed NURBS patch, the construction
of which will be addressed in the next section. It should
be noted that the guiding surface may have extraneous
components as in Fig. 7, which are not considered when
creating the cutting surface. It is also possible to place
auxiliary obstacles that influence the shape of the guiding
surface.

4. Parameterization of the guiding surface

The parameterization step uses different approaches for
dimensions two and three.

First we consider the curve case, i.e., dimension d = 2.
A variety of parameterization techniques for implicitly de-
fined curve segments exists. We implemented a marching
algorithm, which uses a predictor-corrector method to gen-
erate a polygon, and combined it with least squares fitting,
in order to construct a parametric spline curve, that ap-
proximates the resulting polygon. The cutting data (two
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Figure 6: Guiding curves and surfaces, represented as zero level sets of cubic spline functions.

Figure 7: Modification of the shape of the guiding curve by using
auxiliary obstacles.

end points and associated tangents) are used to define end
points and boundary tangents for the curve obtained by
the least-squares fitting. The accuracy of the final result
can be controlled by adjusting the number of control points
for the approximating curve and by choosing an appro-
priate sampling density (depending on the stepsize of the
marching algorithm).

The second case, where we need to find an approximate
parameterization of the guiding surface, is far more chal-
lenging to deal with. In fact, it requires the solution of
two non-trivial problems.

We construct an approximate parameterization of the
guiding surface by a trimmed spline patch

p : Ω ⊂ [0, 1]2 → R3,

(u, v) 7→
∑
i

ψi(u, v)di.
(4)

The parameterization is defined by tensor-product B-
splines ψi, control points di ∈ R3 and a trimmed parameter
domain Ω. The spline patch has to satisfy two conditions:

1. Its boundary p(∂Ω) interpolates the cutting loop L
and the tangent planes along the boundary contain
the associated tangent vectors. In addition, the tan-
gent vectors point to the interior of the surface patch.

2. The interior of the surface is an approximate param-
eterization of the guiding surface. More precisely, the
composition f∗ ◦ p is close to zero on Ω.

The patch is constructed in two steps.

Step 1 - Construction of the trimmed parameter domain.
We choose the domain Ω as a planar polygon, contained
within the unit square, that mimics the shape of the cut-
ting loop. This similarity will lead to better results in the
second (parameterization) step.

We simply use the unit square [0, 1]2 for four-sided cut-
ting loops whenever this is appropriate, thereby avoiding
trimming in this case. A more general polygon is used to
define the domain if the square is not suitable.

More precisely, we choose this polygon such that the ra-
tios of adjacent edge lengths are approximately equal to
the ratios of the lengths of the corresponding curve seg-
ments, and the oriented angles between incoming and out-
going tangents at vertices are approximately the same and
preserve the sign. Several techniques are used to find this
polygon [32]:

• The first one simply projects the vertices of the cut-
ting loop into a plane and connects them by straight
lines. This simple method already leads to good re-
sults in most cases, since the segmentation algorithm
described in [15, 20, 22] generally uses relatively sim-
ple cutting loops (in particular near-planar ones).

• Some solids however do not allow for (near-) planar
cutting loops, and therefore a projection into a plane
would not result in a valid polygon. In this case, a
second technique is used which relies on quadratic op-
timization:

arg min
x

(Ax− b)T (Ax− b) subject to Cx = d

(5)
where

A = diag(
1

`i
), b = (1, . . . , 1)T , d = (0, 0)T , and

C =

(
cos(α1) cos(α1 + α2) · · · cos(

∑n
i=1 αi)

sin(α1) sin(α1 + α2) · · · sin(
∑n

i=1 αi)

)
.

The values `i are the lengths of the original cutting
loop in 3d, while one obtains αi by scaling the tan-
gent turning angles of the cutting loop, such that

6



∑n
i=1 αi = 2π. As result of the optimization (5) one

obtains a set of edge-lengths xi, that together with the
angles αi form a closed planar polygon, which mimics
the shape of the cutting loop.

• Additionally we also consider a third technique as
fall-back strategy, that generates a curved polygon
with vertices placed on a circle. This technique is
to be used if the optimization fails or returns a self-
intersecting polygon.

Step 2 - Finding the control points. The surface patch p is
a trimmed bicubic tensor-product spline patch with uni-
form knots. Initially we choose 3 inner knots per direction
and refine if the accuracy of the result is not sufficient.

We generate the control points by solving a constrained
optimization problem. The objective function is a combi-
nation of three terms:

• The first term ∫
Ω

ω(t)[(f∗ ◦ p)(t)]2 dt (6)

measures the closeness to the implicit guiding surface.
Note that the composition (f∗◦p) of the two functions
f∗ and p vanishes at the parameter t if the implicit
curve defined by f∗ = 0 interpolates the point p(t).
The weighting function ω is procedurally defined such
that it is zero at the domain boundary and increases
towards the center of the domain, finally reaching the
value 1 in the center of the domain. Using the weight-
ing function improves the accuracy of the boundary
interpolation, since the cutting surface approximates
the exact cutting data but not the implicit guiding
surface near the boundary.

• The second term ensures the approximation of the
cutting data. It takes the form∫

∂Ω

‖p(t)− L(t)‖2 + λ‖∇p(t) · ~n (t)‖2dt (7)

where L(.) and ~n (.) are parameterizations of the
boundary data over the domain boundary ∂Ω and λ
is a positive weight. The first part ensures positional
accuracy, while the second one controls the tangent
planes along the boundary. The positive weight λ
controls the relative influence of both terms.

• The third term is the approximate thin-plate energy,
which is a standard fairness measure for surface fit-
ting in geometry reconstruction [30]. It is used to
regularize the fitting result.

The three terms are combined using non-negative weights,
whose influence is discussed in the next section. In our
experiments, we always scaled the geometry such that the
bounding box fits into the unit cube and used standard
weights (10, 1, 1) for the three terms.

In addition to the objective function, the optimization
also considers equality and inequality constraints. The
first ones ensure the interpolation of the cutting loop at
the vertices, while the second ones enforce the correct ori-
entation of the boundary tangents, by making sure that
the prescribed tangents along the cutting loop point to-
wards the interior of the trimmed surface patch.

For the minimization of the non-linear objective func-
tion we need an initial solution, which we find by solving
a simplified problem. When the first weight is set to zero,
the resulting objective function becomes quadratic and can
be solved rather easily. Note that the returned surface will
be a regular trimmed surface patch, that interpolates the
cutting loop on its boundary. In most situations (charac-
terized by a relatively simple form of the solid and reason-
able choice of the cutting loop) the interior of this surface
patch will not penetrate the solid’s boundary faces, thus
the initial solution can be used as a valid cutting surface.

For more complicated cases, however, the initial surface
may intersect the boundary of the solid. We then obtain
a valid result by minimizing the objective function with a
positive first weight, using an iterative method that starts
with the initial solution. More precisely, we then apply
the fmincon function of MatlabTM to compute the con-
trol points by solving the resulting optimization problem.
Examples are presented in the next section.

5. Results

This section consists of two parts. First we focus on
the two-dimensional case, i.e., on the problem of finding a
curve inside a given planar domain, connecting two points
on the domain’s boundary. We consider the same test
cases as used by Nguyen et al. [21] and show that the
new method solves these problems as well while signifi-
cantly accelerating the computation. In the second part
we present results for three–dimensional solids, which are
subdivided into topological hexahedra using the algorithm
of the isogeometric segmentation pipeline [15, 20]. In the
considered examples, the original construction of the cut-
ting surface fails, since the generated surfaces intersect the
solid’s boundary. We show that the method introduced in
the present paper, which uses implicit guiding surfaces,
resolves these problems.

5.1. Cutting curves

The first examples are shown in Figure 8. Three rela-
tively simple domains are given, along with endpoints and
desired tangent vectors of the cutting curve.

Clearly, our method produces results that are different
from the curves obtained by the method in [21]. This
is hardly surprising, as the methods rely on different ap-
proaches. Nevertheless, the resulting curves are also valid
solutions as they fulfill all necessary criteria. Examining
the runtimes of both algorithms (see Table 1) shows a sig-
nificant advantage of the new method: Depending on the
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Figure 8: Guiding curves (blue) and cutting curves (purple) for the three character-shaped domains considered in [21]. The red curves have
been generated by the method described in [21].

domain’s complexity, we accelerate the method by about
one or two orders of magnitude.

Example U J K Maze Snake

method from [21] 337s 272s 3,309s 410s 7,657s
new method 9s 10s 11s 15s 27s
speedup 37.4 27.2 300.8 27.3 283.6

Table 1: Computing times for the examples shown in Figs. 8 and 9.

There are several reasons for this speedup:

1. Computing the implicit guiding curve involves evalu-
ating the objective function (2) multiple times. The
bottleneck of this computation is the regularity term
(3), which consists of a double integral over a bi-
variate function. As mentioned earlier, one can ex-
ploit the tensor-product structure of the spline func-
tion f∗ and rewrite the regularity term in the form
Freg(c) = cT ·M(u, v) ·c, where each entry of the ma-
trixM is the product of univariate integrals over prod-
ucts of derivatives of B-spline basis functions. The
matrix M can be easily computed in advance and ev-
ery further evaluation of the objective function can be
done by a matrix-vector multiplication.

2. In addition to the efficient computation of the ob-
jective function of (RDCP), there are only linear in-
equality constraints, in contrast to the more expensive
computation of the penalty functions in [21].

3. For curves, the parameterization step is less compli-
cated than for surfaces. There is no need to solve a
constrained optimization problem as there are faster
methods available. We use a marching algorithm
to create an approximating polygon which is subse-
quently used to fit a parameterized spline curve.

4. We use standard settings for the degrees and knot
vectors of the implicit guiding curve, as well as for
the final parameterized curve and recieved valid re-
sults for all examples. Only for the snake example we
got an improvement by manually chosing a different
knot vector for the implicit guiding curve. However
the vast speedup would allow to run several different
settings and simply using the best result, while still
reducing the runtime.

The next two test cases, shown in Figure 9, involve more
complicated domains, which are again dealt with by both

methods. Again we obtain valid results and a speed-up
of the computing time. The new algorithm is about 27
times faster for the example of the maze and provides a
tremendous improvement for the snake domain. While the
original algorithm takes slightly over two hours, the new
method returns the result after just 27 seconds.

Figure 9: Guiding curves (blue) and cutting curves (purple) obtained
for two more complicated domains: Maze (top) and snake (bottom).
The red curves have been generated by the method described in [21].

We conclude this section by analyzing the influence of
the optimization weights, which are used when computing
the guiding curve. We consider an L-shaped domain and
compute several implicit curves by considering various set-
tings of the parameter values, see Fig. 10. More precisely,
we minimize the objective function of RDCP with fixed
values of λint and λtan and investigate the influence of the
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values of λreg and δ. For every curve, we calculate the
minimum distance to the boundary of the domain and the
maximum curvature of the resulting curve. It is clearly
visible, that an increase of λreg results in a decrease of the
curvature, while a higher value of δ increases the distance
between the curve and the domain boundary.

Figure 10: Experimental results showing the influence of the weights
used for computing the guiding curve. The value d is the length of
the purple line (distance between corner and curve) and κmax is the
maximum curvature of the curve segment. The red dot identifies the
location of the curvature maximum.

5.2. Cutting surfaces

The first example (visualized in Fig. 11) shows a por-
tion of an “iron maiden”: two parallel walls with spikes
pointing towards each other. The height of the spikes ex-
ceeds half the distance between the two walls, so a planar
surface would be penetrated by those spikes. The bottom
picture shows the resulting wave-shaped guiding surface,
which is fully contained in the empty space left between
these spikes.

The second example shows the influence of the regularity
weight in the parameterization step. We consider a cube
shaped vase with a planar cutting loop, visualized in side
view in Fig. 12. The computed implicit guiding surface is
shown in red, and we obtain three different parameterized
patches, depending on the weight for the fairness measure.
As the weight λreg (weight of the third term) increases,
the resulting surface becomes less curved and does not
approximate the guiding surface anymore: Note that this
may lead to an invalid cutting surface (see Fig. 12 right).
In all our examples, we reached satisfying results when
setting the weight to 1.

A more complicated version of the vase-shaped object,
with non-planar faces and a non-planar cutting loop is
shown in Fig. 1. The constructed implicit guiding surface
is depicted in the center picture, next to the finally ob-
tained parameterized trimmed surface patch. Note that

Figure 11: “Iron maiden” domain (top) and resulting guiding surface
(bottom).

Figure 12: Influence of the regularity weight in the parameterization
step.

the parameter domain (right) is a five-sided planar poly-
gon, which has been automatically generated.

The cutting loops considered in the previous examples
were manually generated and did not introduce a meaning-
ful segmentation. The intention of these loops was to show
the properties of the cutting surface construction. In con-
trast to this, the remaining two examples use real cutting
loops generated by the segmentation algorithm [15, 20].

The first example is a cube with two slots, which re-
quires a non-trivial segmentation, shown in Fig. 13. We
observed that this shape occurs frequently when applying
the segmentation method [15, 20] to engineering objects
with holes.

The original construction of the cutting surface fails,
since two opposite faces of one of the solids in the left part
of Fig. 13 intersect each other. This problem can now
be resolved by using the novel cutting surface construc-
tion. The pictures on the right hand side show the same
example, but with cutting surfaces obtained by using im-
plicit guiding surfaces. We obtain a valid segmentation
into three topological hexahedra.

9



Figure 13: Segmentation of the bi-slotted cube with invalid (left) and valid (right) cutting surfaces.

The final example is a slightly simplified coupling piece
of a garden hose, see Fig. 14. Due to the symmetry, it
suffices to consider only a quarter of this object.

The result of the segmentation algorithm is presented
in Fig. 15. Most segmentation steps are rather simple,
as they simply cut slices off the solid, using planar cutting
surfaces. There is, however, a more challenging step, which
is marked in red. Here, the original construction of the
cutting surface fails, due to the particular shape of the
solid. The cutting surface penetrates the solid’s boundary.
This fact is visualized in Fig. 16, left. Using the implicit
guiding surface leads to a different result, that resolves
this problem, see Fig. 16, right. Summing up, we obtain
a valid segmentation into eight topological hexahedra and
one triangular prism.

6. Conclusion and outlook

An important part of the isogeometric segmentation
pipeline [22] is the robust and reasonably fast construc-
tion of cutting surfaces. Such a cutting surface needs to
fulfill all required properties, i.e. its boundary interpolates
the associated cutting loop and its interior keeps a reason-
able distance to the solid’s boundary. We proposed a novel
method, that combines techniques of implicit surface fit-
ting and trimmed surface fitting in order to achieve this
goal. It can also be used to solve the two-dimensional ver-
sion of this problem, namely constructing a curve inside a
planar domain, with specified endpoints and tangent vec-
tors on the domain’s boundary. Since the two-dimensional
problem was already addressed in [21], we compared the
results of both methods and observed a substantial im-
provement in the computational times. We showed that
our method is capable of handling rather difficult domains
and complicated cutting loops, as well as dealing with real
segmentation problems. Future work may be devoted to a
theoretical analysis of the proposed framework for cutting

surface construction, concerning both the computational
complexity and the existence and uniqueness of solutions.

A disadvantage of the isogeometric segmentation
pipeline is the restriction to using a single cutting surface
at each step. A midpoint subdivision technique could be
used in order to segment a suitable solid into topological
hexahedra, by constructing multiple surfaces, that meet in
the solid’s center. Often this would lead to a better seg-
mentation since these surfaces would cut near-orthogonally
through the solid’s boundary surfaces, leading to a better
distribution of angles. The surfaces used in midpoint sub-
division need to fulfill similar properties as the cutting sur-
face we constructed in this paper, e.g. interpolating given
boundary curves without intersecting the solid’s boundary
in the interior. The method proposed in this article should
therefore be generalized to this situation.
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