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Abstract

We generate a basis of the space of bicubic and biquartic C1-smooth geometrically con-
tinuous isogeometric functions on bilinear multi-patch domains Ω ⊂ R

2. The basis func-
tions are obtained by suitably combining C1-smooth geometrically continuous isogeometric
functions on bilinearly parameterized two-patch domains (cf. [16]). They are described by
simple explicit formulas for their spline coefficients.

These C1-smooth isogeometric functions possess potential for applications in isogeomet-
ric analysis, which is demonstrated by several examples (such as the biharmonic equation).
In particular, the numerical results indicate optimal approximation power.
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1. Introduction

Isogeometric Analysis (IgA) is a promising framework for performing numerical simula-
tion, which uses the same (rational) spline function space for representing the geometry of
the physical domain and describing the solution space [8, 15]. Multi-patch parameteriza-
tions have been introduced in order to perform isogeometric simulations on more complex
geometries. Two main approaches for coupling the individual patches exist.

The first one does not modify the isogeometric spaces on the individual patches but
uses other techniques to achieve global smoothness of the solution (at least approximately).
These include the discontinuous Galerkin method [20, 27], the use of Nitsche’s technique [1,
23], the mortar approach [3, 9, 12] and domain decomposition methods [13, 18]. Typically,
these techniques aim at ensuring C0-continuity weakly of the resulting numerical solution.

The second approach uses a globally defined basis for the isogeometric simulation on the
multi-patch domain, thereby modifying the spaces on the individual patches and coupling
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them explicitly. The case of C0-smoothness is well understood: The notion of isogeo-
metric spline forests was introduced in [26] and was extended recently by enhancing the
smoothness across interfaces and introducing hierarchical spline refinement [5]. Isogeomet-
ric function spaces possessing higher regularity, however, are more difficult to construct
and require the classical notion of geometric continuity, see [24] and the references therein.

Geometric continuity is a well-established approach in Computer Aided Geometric De-
sign for designing smooth multi-patch surfaces possessing extraordinary vertices (EVs) [10,
14], i.e., surfaces composed of quadrilateral patches where other than 4 patches may meet
in some vertices. The construction of Cs-smooth isogeometric functions on multi-patch
domains is based on the observation – which has been formalized firstly by Groisser and
Peters [11] – that the Cs-smoothness of an isogeometric function is equivalent to the geo-
metric smoothness of order s (Gs-smoothness) of its graph surface1, where s is a positive
integer. Motivated by this we denote the Cs-smooth functions on a multi-patch domain as
Cs-smooth geometrically continuous isogeometric functions [16].

We restrict ourselves to the case s = 1. Two different strategies following the concept
of geometric smoothness have been explored.

The first one derives C1-smooth geometrically continuous isogeometric functions from
existing constructions for G1-smooth multi-patch surfaces that originated in geometric
design. Related results include the recent publications [17, 21, 22], which are based on
different G1-smooth multi-patch spline surfaces, and the use of EVs in T-spline-based
representations [25]. Numerical results indicate that the accuracy of the results may dete-
riorate in the vicinity of the EVs. Moreover, the construction of nested isogeometric spaces
via h-refinement remains an open problem if EVs are present.

The second strategy employs a basis of the entire space of C1-smooth functions on a par-
ticular class of multi-patch geometries, cf. [2, 16], and uses it to describe the geometry and
to perform isogeometric simulations. A first step was presented in [16], where we analyzed
the spaces of bicubic and biquartic C1-smooth geometrically continuous isogeometric func-
tions on bilinearly parameterized two-patch domains. Furthermore we developed a simple
framework for the construction of a basis in the general setting and obtained promising
numerical results indicating optimal approximation power. These are also supported by
the recent results in [7].

The approaches [2, 16] (and also the present approach) are based on assembling B-spline
isogeometric patches. It is different from the classic higher order Finite Elements Methods
(FEM) such as Clough-Tocher macro triangles and their generalization to bivariate trian-
gular splines, cf. [19]. These FEM based approaches construct C1-smooth bases functions
per element. In contrast, the present and the earlier approaches [2, 16] deal only with
the patches’ interfaces and therefore the interior of each patch has the regularity of the
corresponding isogeometric B-Spline (which can be higher than C1, especially for higher
order splines). Moreover, the patches can have vertices of any valence, that would not

1The graph surface of an isogeometric function is the 3D surface where the first two coordinates are
the coordinates of the physical domain and the third coordinate is the associated value of the isogeometric
function, compare Eq. (10).
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be possible with classical bivariate Hermite type constructions like Bogner-Fox-Schmidt
quadrilaterals, cf [6].

The present work extends the earlier results from [16], obtained for bilinearly param-
eterized two-patch domains, to bilinearly parameterized multi-patch domains. This gen-
eralization increases the geometric flexibility of the construction, while we also present
numerical results indicating that the optimal approximation properties are preserved. We
describe the construction of bicubic and biquartic C1-smooth geometrically continuous iso-
geometric basis functions. The constructed basis allows the use of the same function space
for performing simulation and describing the geometry in agreement with the main ideas of
IgA. The basis functions are specified by simple explicit formulas for their spline coefficients
in contrast to [16], where Bézier coefficients are used to present a basis of bi-degree (4, 4).

The main differences and novelties of our work compared to [2] are as follows: While our
construction is based on bicubic and biquartic C1-smooth geometrically continuous isogeo-
metric basis functions, the work [2] mostly deals with biquintic functions and the biquartic
case is only described for a specific setting of the multi-patch domain. In particular, the
construction of bicubic C1-smooth geometrically continuous isogeometric functions has not
been considered at all. In [2] the basis functions are only implicitly defined by the existence
of a minimal determining set for the involved Bézier coefficients. This is in contrast to our
our work, where the obtained functions are specified by simple explicit formulas for their
spline coefficients. Furthermore, we are able to generate nested C1-smooth isogeometric
spaces which were not investigated in [2].

The paper is organized as follows. First we describe the class of bilinearly parameterized
multi-patch domains Ω ⊂ R

2, which is considered throughout this paper, in Section 2.
In addition, we introduce the spaces of bicubic and biquartic C1-smooth geometrically
continuous isogeometric functions on these domains.

The case of two-patch domains is considered in Section 3. We recall the earlier results
from [16] and extend them by including explicit constructions for a basis in the bicubic
case and by modifying the constructions near the boundary (both for bicubic and biquartic
splines), thereby preparing the multi-patch case.

Based on these results we generate a basis of the space of C1-smooth geometrically
continuous isogeometric functions on bilinear multi-patch domains in Section 4 by suit-
ably combining the basis functions on two-patch geometries. Finally we present several
examples that demonstrate the potential of our construction for isogeometric analysis in
Section 5. More precisely, we use C1-smooth bicubic and biquartic functions for per-
forming L2-approximation and for solving Poisson’s equation and the biharmonic equation
on different multi-patch domains. The numerical results indicate optimal approximation
power.

2. Preliminaries

The notion of Cs-smooth geometrically continuous isogeometric functions on general
multi-patch domains was introduced in [16, Section 2]. In this section, we first present
the particular class of bilinear multi-patch domains Ω ⊂ R

2, which will be considered
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throughout the paper. Then we recall the concept of geometrically continuous functions
for s = 1.

Bilinear multi-patch domains. Given a domain Ω ⊂ R
2 with a piecewise straight boundary,

we consider a quadrangulation without hanging vertices, i.e., a subdivision into mutually
disjoint strictly convex quadrilaterals, which we call patches. More precisely, we assume
that the quadrangulation consists of P ∈ Z

+ quadrilateral patches Ω(ℓ), ℓ = 1, . . . , P , which
are joined together in E ∈ Z

+ non-boundary edges Γ(e), e = 1, . . . , E. Each patch Ω(ℓ) is
the image of the unit square under a bilinear geometry mapping

G(ℓ) : [0, 1]2 → R
2, (1)

represented in coordinates by

ξ(ℓ) = (ξ
(ℓ)
1 , ξ

(ℓ)
2 ) 7→ G(ℓ)(ξ(ℓ)) = (G

(ℓ)
1 (ξ

(ℓ)
1 , ξ

(ℓ)
2 ), G

(ℓ)
2 (ξ

(ℓ)
1 , ξ

(ℓ)
2 )). (2)

All these mappings are bijective and regular since the patches were assumed to be strictly
convex.

Spline bases. We denote by Sd
k the tensor-product spline space of degree (d, d), which is

defined on the unit square [0, 1]2 by choosing k uniform inner knots of multiplicity d − 1
in both parameter directions. In particular, we consider degrees d = 3, 4 and assume that
the number of inner knots satisfies k ≥ 5− d. Each space Sd

k is spanned by tensor product
B-splines

{Ni : i ∈ J}

with the index set

J = {i = (i1, i2) : 0 = (0, 0) ≤ i ≤ (d+ k(d− 1), d+ k(d− 1))}.

Since the bilinear geometry mappingsG(ℓ) are contained in the space Sd
k×Sd

k , each geometry
mapping G(ℓ) possesses a spline representation

G(ℓ)(ξ(ℓ)) =
∑

i∈J

d
(ℓ)
i Ni(ξ

(ℓ)), (3)

with spline control points d
(ℓ)
i ∈ R

2. The indices of all spline control points form the index
space

I =
⋃

ℓ∈{1,...,P}

{ℓ} × J.

In addition, we consider for each edge Γ(e) the index space IΓ(e) ⊆ I, which is given as
follows:

Definition 1. Let Γ(e) be a non-boundary edge of Ω and let ℓ and ℓ′ be the indices
of the two patches Ω(ℓ) and Ω(ℓ′), respectively, which possess the common edge Γ(e), i.e.
Γ(e) = Ω(ℓ) ∩ Ω(ℓ′). We denote by IΓ(e) the subspace of the index space

{(r, i) ∈ I | r ∈ {ℓ, ℓ′}},

which is obtained by the indices (r, i) whose spline control points d
(r)
i belong to the edge Γ(e)

or to the neighboring column of control points of the patch Ω(r).
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Figure 1: A two-patch subdomain is determined by 6 patch vertices v(i), i = 1, . . . , 6. The areas of the
four shown triangles have to satisfy a condition, compare condition (i).
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Figure 2: Two-patch subdomains violating one of the three technical conditions (i)-(iii), where the spline
segments (k = 3) are pictured as dotted lines. The crosses connected by lines are the point triplets that
are assumed to be not collinear. The red color signals a violation. (It is assumed that v(3) is a boundary
vertex of valence 3 for (ii) and an inner vertex or boundary vertex of valence other than 3 for (iii).)

Two-patch subdomains. Any pair of neighboring patches Ω(ℓ) and Ω(ℓ′) defines a two-patch
subdomain. We denote it by Ω(ℓ,ℓ′) and the common edge by Γ(ℓ,ℓ′). We may assume that
the common boundary edge is represented by G(ℓ)(1, ξ2) = G(ℓ′)(0, ξ2). If this assumption
is violated (e.g., if the edge is traced in reverse directions), we may apply a simple linear
reparameterization to obtain a situation where it is satisfied.

We denote the six vertices of the two-patch subdomain as

v(1) = G(ℓ)(0, 0), v(2) = G(ℓ)(0, 1), v(3) = G(ℓ)(1, 0),

v(4) = G(ℓ)(1, 1), v(5) = G(ℓ′)(1, 0), and v(6) = G(ℓ′)(1, 1),

see Fig. 1.
Recall that the dimension of the space of geometrically continuous isogeometric func-

tions is strongly dependent on the specific geometric configuration, see [16, Table 1]. More
precisely, we obtain the same dimension for all “generic” configurations, but the dimension
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increases for certain special configurations. In addition, the specific construction of a basis
is also dependent on the geometric configuration. A detailed investigation of the various
special cases is beyond the scope of our work, see [2] for a similar discussion.

Instead we will assume three technical conditions (i-iii), which need to be satisfied by all
two-patch subdomains. The first condition (i) ensures that dimension of the spline space
on the two-patch domain is covered by the results in [16]. The remaining two conditions,
which ensure that specific point triplets in the vicinity of a boundary or inner vertex are
not colinear, are required for the specific construction of the basis functions.

(i) The areas of the four triangles shown in Fig. 1 satisfy

area(△v(3)v(4)v(1))area(△v(4)v(3)v(6)) 6= area(△v(3)v(4)v(2))area(△v(4)v(3)v(5)),

and the k point triplets

(1− ξ2)v
(1) + ξ2v

(2), (1− ξ2)v
(3) + ξ2v

(4), (1− ξ2)v
(5) + ξ2v

(6)

for ξ2 = 1
k+1

, 2
k+1

. . . , k
k+1

are not collinear, where k specifies the number of inner

knots used for defining the spline space Sd
k , see Fig. 2 (left). The first assumption is

equivalent to the so-called genericity condition (cf. [16, Eq. (10)]).

(ii) The point triplet

k
k+1

v(3) + 1
k+1

v(4), k
k+1

v(3) + 1
k+1

v(1) and

( k
k+1

)2v(3) + k
(k+1)2

(v(4) + v(5)) + ( 1
k+1

)2v(6)

is not collinear if v(3) is a boundary vertex of valence 3, compare Fig. 2 (center). An
analogous condition is required for v(4).

(iii) The point triplet
v(1), v(3), v(5)

is not collinear if v(3) is an inner vertex or a boundary vertex of valence other than
three, see Fig. 2 (right). An analogous condition is required for v(4).

Examples of two-patch domains, which violate one of these three conditions, are visualized
in Fig. 2.

Isogeometric functions. We consider the space Ṽ of isogeometric functions on the multi-
patch domain Ω,

Ṽ =
{
v ∈ L2(Ω) : v|Ω(ℓ) ∈ Sd

k ◦ (G
(ℓ))−1 for ℓ = 1, . . . , P

}
. (4)

An isogeometric function w ∈ Ṽ is represented on each patch Ω(ℓ) by

w(x) =
(
W (ℓ) ◦ (G(ℓ))−1

)
(x), x ∈ Ω(ℓ), (5)
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with the spline function

W (ℓ)(ξ(ℓ)) =
∑

i∈J

b
(ℓ)
i Ni(ξ

(ℓ)), (6)

which is specified by coefficients b = (b
(ℓ)
i )(ℓ,i)∈I ∈ R

|I|. It can be rewritten simply as

w(x) = B(x)b, x ∈ Ω, (7)

where the row vector B collects the transformed B-splines

B(x) = (B
(ℓ)
i (x))(ℓ,i)∈I (8)

with

B
(ℓ)
i (x) =

{
(Ni ◦ (G

(ℓ))−1)(x) if x ∈ Ω(ℓ),

0 otherwise.
(9)

In the sequel we will shortly write w = Bb.
The associated graph surface F (ℓ) has the parametric representation

F (ℓ)(ξ(ℓ)) =
(
G

(ℓ)
1 (ξ(ℓ)), G

(ℓ)
2 (ξ(ℓ))︸ ︷︷ ︸

=G(ℓ)(ξ(ℓ))

,W (ℓ)(ξ(ℓ))
)T

, ξ(ℓ) ∈ [0, 1]2. (10)

For a function Bb ∈ Ṽ , we denote by supp⋆(b) ⊆ I the support of Bb in the spline
coefficient space, i.e.,

supp⋆(b) = {(ℓ, i) ∈ I | b(ℓ)i 6= 0}.

Geometrically continuous functions. We are interested in the space

V = Ṽ ∩ C1(Ω) =
{
v ∈ C1(Ω) : v|Ω(ℓ) ∈ Sd

k ◦ (G(ℓ))−1 for ℓ = 1, . . . , P
}
, (11)

that contains the globally C1-smooth isogeometric functions defined on the multi-patch
domain Ω. These functions can be characterized using the concept of geometric continuity
(G1-smoothness), see [11, Theorem 1] and [16, Theorem 1]. More precisely, the isogeometric

function w ∈ Ṽ belongs to the space V if and only if for all neighboring patches Ω(ℓ) and
Ω(ℓ′), ℓ, ℓ′ ∈ {1, . . . , P} with ℓ 6= ℓ′, the associated graph surfaces F (ℓ) and F (ℓ′) meet
with G1-smoothness along the common edge Γ(ℓ,ℓ′). This equivalence result motivated us
to denote the elements of the space V as C1-smooth geometrically continuous isogeometric

functions.

A general framework for the construction of C1-smooth geometrically continuous func-
tions was described in [16, Section 2.3]. Imposing the G1-smoothness between the graph
surfaces of all neighboring patches Ω(ℓ), Ω(ℓ′), ℓ, ℓ′ ∈ {1, . . . , P} with ℓ 6= ℓ′ leads to linear

constraints on the spline coefficients b
(ℓ)
i . These form a homogeneous linear system

Hb = 0, b =
(
b
(ℓ)
i

)
(ℓ,i)∈I

. (12)

Any basis of the nullspace of H then defines a basis of the space V .
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3. C1-smooth functions on bilinear two-patch geometries

In this section we restrict ourselves to a two-patch domain Ω = Ω(1,2) that satisfies
Assumptions (i-ii). We recall results from [16] concerning basis functions and rewrite them
in a way which is convenient for their extension to the multi-patch case. Amongst others,
we present the specific basis from [16] for bi-degree (4,4) with respect to spline instead
of Bézier coefficients and introduce a new similar specific basis for bi-degree (3,3). In
addition, we present modified functions near to the vertices of the common interface of the
two-patch domain.

3.1. Patch basis functions

These functions are obtained by composing a tensor-product B-spline Ni of one of the
two patches, which has zero values and derivatives on the interface, with the inverse of the
geometry mapping G(ℓ),

x 7→

{
(Ni ◦ (G

(ℓ))−1)(x) if x ∈ Ω(ℓ)

0 otherwise
(ℓ, i) ∈ I \ IΓ(1,2) . (13)

The support of each function is contained in only one of the two patches Ω(1) and Ω(2) and
the coefficient support consists of a single index. The associated coefficient takes the value
one. All coefficients with indices in IΓ(1,2) are equal to zero. The number of these functions
is

2(d− 1 + k(d− 1))(d+ 1 + k(d− 1)). (14)

3.2. Edge functions

These functions possess a support that is contained in both patches Ω(1) and Ω(2), where
supp⋆(b) contains only indices (ℓ, i) ∈ IΓ(1,2) . In contrast to the patch basis functions, the

associated spline coefficients b
(ℓ)
i of the edge functions depend on the geometry mappings.

We present different types of edge functions which will be used in the next section to
construct a basis of the space of C1-smooth geometrically continuous functions on multi-
patch domains. The spline coefficients of the different edge functions are computed by
simple explicit formulas (see Appendix B) with respect to a corresponding local geometry
(see Fig. 3), which has been introduced to substantially simplify these formulas.

Local coordinate system. The support in coefficient space of the constructed edge functions
will be contained in at most four pairs of adjacent spline elements. For this we introduce
for two, three and four pairs of adjacent spline elements (which are bilinear elements) local
coordinate systems visualized in Fig. 3. These local geometries are obtained as follows:
We transform n ∈ {2, 3, 4} pairs of adjacent bilinear elements in such a way that the lower
and upper common vertex of the bilinear elements, i.e.

G(1)(1,
i

k + 1
) and G(1)(1,

i+ n

k + 1
),
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type L, U, Y type A type B
d = 3

b0 b1b1 b2

b3 b4b4 b5

b6 b7b7 b8

b9 b10b10 b11

b12 b13b13 b14

b15

(x0,y0)
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(0,0)

(0,3)
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G
(1)( k

k+1
,0)

G
(1)( k

k+1
, 3
k+1

)

G
(1)(1,0)

G
(1)(1, 3

k+1
)

G
(2)( 1

k+1
,0)

G
(2)( 1

k+1
, 3
k+1

)

b6 b7b7 b8

b9 b10b10 b11

b12 b13b13 b14

b15 b16b16 b17

(x0,x0)

(x1,y1)

(0,0)

(0,3)

(x2,y2)

(x3,y3)

G
(1)( k

k+1
, i
k+1

)

G
(1)( k

k+1
,
i+3
k+1

)

G
(1)(1, i

k+1
)

G
(1)(1,

i+3
k+1

)

G
(2)( 1

k+1
, i
k+1

)

G
(2)( 1

k+1
,
i+3
k+1

)

b8

b9 b10b10 b11

b12 b13b13 b14

b15 b16b16 b17

b18 b19b19 b20
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(x0,y0)

(x1,y1)

(0,0)

(0,4)

(x2,y2)
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(1)( k
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, i
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(1)( k
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i+4
k+1

)
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(1)(1, i

k+1
)

G
(1)(1,
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k+1

)

G
(2)( 1
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, i
k+1

)

G
(2)( 1

k+1
,
i+4
k+1

)
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)

G
(1)(1,0)

G
(1)(1, 2
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)

G
(2)( 1
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,0)

G
(2)( 1
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, 2
k+1

)

b6 b7b7 b8

b9 b10b10 b11
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)
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)
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Figure 3: Support in coefficient space of the edge basis functions of type A, B, L, U, and Y for d = 3, 4
on a two-patch domain Ω(1,2), where the red edge is aligned with the interface Γ(1,2). The vertices of the
spline elements (i.e. G(ℓ)(·, ·), ℓ = 1, 2) are transformed into local coordinates, shown in blue. These local
coordinate system is used to compute the spline coefficients in Appendix B.

possess the coordinates (0, 0) and (0, n), respectively. The remaining four vertices of the
bilinear elements, i.e.

G(1)(
k

k + 1
,

i

k + 1
), G(1)(

k

k + 1
,
i+ n

k + 1
), G(2)(

1

k + 1
,

i

k + 1
) and G(2)(

1

k + 1
,
i+ n

k + 1
),

are then transformed into coordinates (xj , yj), j = 1, . . . , 4.
These local coordinate systems are similar to the corresponding systems in [16, Fig.5],

which have been introduced for the computation of the Bézier coefficients of the edge
functions (see [16, Appendix]). We decided to use spline instead of Bézier coefficients to
obtain a more compact representation of the edge functions. Note that a simple linear
relation (cf. [14, Section 10.1.3]) allows to switch between both representations.
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Previous results. In [16] the space of edge functions for d = 3, 4 has been investigated. It
has been shown that the dimension of the space is equal to

(2d+ 1) + (2d− 4)k, (15)

see [16, Lemma 3 and Theorem 4]. The dimension formula (15) is also valid for d = 2.
Then the resulting dimension is 5, for any k, which implies that there does not exist a
construction having locally supported functions and allowing h-refinement.

In addition, a specific basis of edge functions has been presented for d = 4 (see [16, Sec-
tion 3.3 and Appendix]). The basis consists of functions of four different types (A,B,L,U)
with possible subtypes, which are locally supported on one to three pairs of adjacent spline
elmenents. The different edge functions are described by means of simple explicit formulas
for their Bézier coefficients with respect to the local coordinate system in [16, Fig.5].

In the following we recall these basis functions in detail by rewriting them with respect
to their spline coefficients and present analogous basis functions for d = 3.

Edge functions for d = 3. The dimension of the space of edge functions is equal to 7 + 2k,
see Eq. (15). A specific basis consists of four types of functions, where some of them have
several subtypes. Their support in coefficient space is shown in Fig. 3, top row. The values
of the coefficients are specified in Appendix B.

A: Any three consecutive pairs of adjacent spline elements (one from each subdomain)
along the interface contribute one function of this type (Fig. 3, top row, center column
and Eq. (B.1)). In total we have k − 1 functions of this type.

B: Any four consecutive pairs of adjacent spline elements along the interface contribute
one function of this type (Fig. 3, top row, right column and Eq. (B.2)). In total we
have k − 2 functions of this type.

L: These 5 functions, one for each subtype L1-L5 (Fig. 3, top row, left column and
Eqns. (B.3)–(B.7)), are associated with the lower vertex of Γ(1,2). Their support
consists of one, two or three pairs of adjacent spline elements.

U: These 5 functions, one for each subtypes U1-U5 (Fig. 3, top row, left column and
Eqns. (B.3)–(B.7)), are defined analogously to type L and are associated with the
upper vertex of Γ(1,2).

It can be shown that these functions are linearly independent and span the entire space of
edge functions. These functions are well-defined if Assumptions (i-ii) are satisfied.

Edge functions for d = 4. The dimension of the space of edge functions is equal to 9 + 4k,
see Eq. (15). A specific basis has already been presented in [16, Section 3.3 and Appendix]
consisting of four types with some subtypes. We rewrite these functions in a more compact
way using spline (instead of Bézier) coefficients. Their support in coefficient space is shown
in Fig. 3, bottom row. The values of the coefficients are specified in Appendix B.
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v0

b0 b1
b2

b3 b4
b5

b6 b7
b8

Ω(1) Ω(2)

Figure 4: The 6 values bi, i = 0, . . . , 5, of the spline coefficients (blue vertices) of the two-patch do-
main Ω(1,2), which correspond to the lower/upper vertex v0 or to one-ring neighborhood of v0. (Here,
the spline coefficients along the common edge (red edge) are drawn only once for both patches, since their
values are equal.)

A: Any two consecutive pairs of adjacent spline elements along the interface contribute
one function of this type (Fig. 3, bottom row, center column and Eqns. (B.8)–(B.10)).
In total we have 3k functions of this type.

B: Any three consecutive pairs of adjacent spline elements along the interface contribute
one function of this type (Fig. 3, bottom row, right column and Eq. (B.11)). In total
we have k − 1 functions of this type.

L: These 5 functions, one for each subtype L1-L5 (Fig. 3, bottom row, left column and
Eqns. (B.12)–(B.16)), are associated with the lower vertex of Γ(1,2). Their support
consists of one, two or three pairs of adjacent spline elements.

U: These 5 functions, one for each subtype U1-U5 (Fig. 3, top row, left column and
Eqns. (B.12)–(B.16)), are defined analogously to type L and are associated with the
upper vertex of Γ(1,2).

As for d = 3, these functions are well-defined if Assumptions (i-ii) are satisfied. The graphs
of the different types of functions are visualized in [16, Fig.6].

Modified edge functions at vertices. In order to construct a basis for the full multi-patch
case, which will be discussed in the next section, we consider a new type of edge functions
at the lower vertex v0 (and similarly for the upper vertex). These new edge functions will
be needed instead of the functions of type L (and U) in the vicinity of an inner vertex or an
boundary vertex of valence greater than three, compare Section 4.3 and 4.4. We consider
the six coefficients bi, i = 0, . . . , 5, in Fig. 3, left column, see also Fig. 4. We construct five
new edge functions (type Y with subtypes Y1-Y5) that possess the following coefficients:

Y1: b0 = 1, b1 = 1, b2 = 1, b3 = 0, b4 = 1, b5 = 0. This function takes the value 1 at the
vertex v0 and possesses a vanishing gradient there.
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Y2: b1 = 0, b3 = 0, b5 = 0. The remaining values b0, b2 and b4 are obtained by sat-
isfying the conditions w(v0) = 0 and ∇w(v0) = (1, 0)T with respect to the global
coordinates.

Y3: b1 = 0, b3 = 0, b5 = 0. The remaining values b0, b2 and b4 are obtained by sat-
isfying the conditions w(v0) = 0 and ∇w(v0) = (0, 1)T with respect to the global
coordinates.

Y4: b0 = 0, b1 = 0, b2 = 0, b3 = 1, b4 = 0, b5 = 0.

Y5: b0 = 0, b1 = 0, b2 = 0, b3 = 0, b4 = 0, b5 = 1.

The coefficients of these new functions are defined as linear combinations of the func-
tions of type L, see Eqns. (B.17)–(B.21). Note that these functions are well-defined if
Assumption (ii) is violated, provided that the Assumption (iii) is satisfied. Clearly, if the
Assumptions (i-iii) are all satisfied, then the functions of type Y span the same space as
the functions of type L. An analogous construction is applied at the upper vertex, and we
use the same symbols to denote the resulting functions.

4. C1-smooth functions on bilinear multi-patch geometries

We use the previously constructed functions on two-patch domains to generate a basis of
the space V , which is formed by the C1-smooth isogeometric functions on a given piecewise
bilinear multi-patch domain.

4.1. Extending the basis functions from the two-patch case

Recall that the spline coefficients b define the isogeometric functionBb, see Eq. (7). We
use upper indices to denote the functions defined on two-patch subdomains, which were
constructed in the previous section. More precisely, the coefficient vectors b(ℓ,ℓ

′) define
C1-smooth isogeometric functions B(ℓ,ℓ′)b(ℓ,ℓ

′) on the bilinear two-patch subdomain Ω(ℓ,ℓ′),
where B(ℓ,ℓ′) is the corresponding sub-vector of the “full” vector of basis functions B,
see (8).

We now extend these functions to the entire multi-patch domain Ω, simply by setting
all spline coefficients b

(r)
i of the additional patches Ω(r), r ∈ {1, . . . , P} \ {ℓ, ℓ′}, to zero.

This is done by applying the extension operator X(ℓ,ℓ′):

Definition 2. Consider the spline coefficient vector b(ℓ,ℓ
′) = (b̄

(r)
i )r∈{ℓ,ℓ′},i∈J of the iso-

geometric function B(ℓ,ℓ′)b(ℓ,ℓ
′) on the two-patch subdomain Ω(ℓ,ℓ′). The extension oper-

ator X(ℓ,ℓ′) generates the spline coefficient vector X(ℓ,ℓ′)b(ℓ,ℓ
′) = b = (b

(r)
i )(r,i)∈I with the

elements

b
(r)
i =

{
b̄
(r)
i if r ∈ {ℓ, ℓ′}

0 otherwise.

Clearly, the extended coefficient vectors define extended isogeometric functions. Some
of them inherit the C1 smoothness:
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Lemma 1. The extended function BX(ℓ,ℓ′)b(ℓ,ℓ
′) is C1-smooth on Ω if the isogeometric

function B(ℓ,ℓ′)b(ℓ,ℓ
′) on the two-patch subdomain Ω(ℓ,ℓ′) is

• a patch basis function satisfying supp⋆(X(ℓ,ℓ′)b(ℓ,ℓ
′)) ∩

⋃
e∈{1,...E} IΓ(e) = ∅ , or

• an edge basis function of type A or B, or

• an edge basis functions of type L or Y in the vicinity of a boundary vertex of valence 3
or

• an edge basis functions of type L or Y in the vicinity of a boundary vertex of valence

other than three satisfying

∀e : Γ(e) 6= Γ(ℓ,ℓ′) =⇒ supp⋆(X(ℓ,ℓ′)b(ℓ,ℓ
′)) ∩ IΓ(e) = ∅.

The proof of this lemma is straightforward. Clearly, these functions do not span the full
space V if inner vertices or boundary vertices with a valence other than three are present.
We therefore need to combine the remaining two-patch basis functions in an appropriate
way.

4.2. Reduced smoothness sets and piecing together isogeometric functions

Definition 3. The reduced smoothness set (RS-set for short) R(b) of an isogeometric
function Bb is the collection of the edges and vertices of the multi-patch domain Ω where
this function is not C1-smooth.

Clearly, the RS-sets of the functions covered by Lemma 1 are empty. We define an
operator that allows us to create new isogeometric functions by piecing together existing
ones:

Definition 4. Consider two isogeometric functions Bb̃ and Bb̂ with coefficient vectors
b̃ = (b̃

(ℓ)
i )(ℓ,i)∈I and b̂ = (b̂

(ℓ)
i )(ℓ,i)∈I , respectively. We assume that all corresponding pairs of

non-zero spline coefficients are identical, i.e.,

b̂
(ℓ)
i 6= b̃

(ℓ)
i ⇒ b̂

(ℓ)
i b̃

(ℓ)
i = 0.

The operator ⊕, which pieces together these two functions, generates the isogeometric
function Bb with coefficients b = b̃⊕ b̂ defined by

b
(ℓ)
i =





b̃
(ℓ)
i if b̂

(ℓ)
i = 0,

b̂
(ℓ)
i if b̃

(ℓ)
i = 0,

b̃
(ℓ)
i if b̃

(ℓ)
i = b̂

(ℓ)
i .

This operation is commutative and associative and will be used to obtain isogeometric
functions with smaller RS-sets:
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vℓ+3Ω(ℓ−1)
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Ω(m)
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w1

v1

Ω(0)

Figure 5: Left: An inner vertex v0 of valence m ≥ 3 with the m neighboring patches Ω(ℓ) in counterclock-
wise order around the vertex v0. Right: A boundary vertex v0 of valence m + 2 with m ≥ 2, where the
m+ 1 neighboring patches Ω(ℓ) are ordered counterclockwise around the vertex v0. Both: The red edges
are the common edges between two neighboring patches, and the blue edges are boundary edges of the
multi-patch domain Ω.

Lemma 2. We consider the situation described in Definition 4, and we select an edge Γ(e)

that belongs to the RS-set R(b̃) of Bb̃ but not to the RS-set R(b̂) of Bb̂. This edge is not

contained in the RS-set R(b̂ ⊕ b̃) of the isogeometric function B(b̂ ⊕ b̃) if the coefficient

supports satisfy

(supp⋆(b̃) ∩ IΓ(e)) ⊆ (supp⋆(b̂) ∩ IΓ(e)).

Proof. According to Definition 4, the spline coefficients b
(ℓ)
i coincide with the spline coeffi-

cients b̂
(ℓ)
i for all (ℓ, i) ∈ IΓ(e). Since the function Bb̂ is C1-smooth across Γ(e), this property

is inherited by B(b̂⊕ b̃).

4.3. Vertex basis functions

We first describe the construction of C1-smooth basis functions in the vicinity of inner
vertices. In the second part of this section we will adapt it to the case of boundary vertices
of valence other than three. For both cases, the resulting C1-smooth functions will be
denoted as vertex basis functions.

Inner vertex. We consider an inner vertex v0 of valence m ≥ 3, and assume that the
m neighboring patches Ω(ℓ), ℓ = 0, . . . , m − 1, are given in a clockwise order around the
vertex v0, see Fig. 5 (left). All upper indices in this paragraph will be considered modulom.

We denote by y
(ℓ,ℓ+1)
i the spline coefficient vector of the edge basis function of type Yi

for the two-patch subdomain Ω(ℓ,ℓ+1). The extended functions BX(ℓ,ℓ+1)y
(ℓ,ℓ+1)
i possess the

RS-sets
R(X(ℓ,ℓ+1)y

(ℓ,ℓ+1)
i ) = {v0,Γ

(ℓ−1,ℓ),Γ(ℓ+1,ℓ+2)}, i = 1, 2, 3, (16)

and
R(X(ℓ,ℓ+1)y

(ℓ,ℓ+1)
4 ) = {Γ(ℓ+1,ℓ+2)}, R(X(ℓ,ℓ+1)y

(ℓ,ℓ+1)
5 ) = {Γ(ℓ−1,ℓ)}. (17)

We define 3 proper vertex basis functions,

B(
m−1⊕

ℓ=0

X(ℓ,ℓ+1)y
(ℓ,ℓ+1)
i ), i = 1, 2, 3. (18)
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These functions are C1-smooth on Ω, since their RS-sets are empty. Indeed, piecing to-
gether the first j + 1 functions in (18) gives the RS sets

R(

j⊕

ℓ=0

X(ℓ,ℓ+1)y
(ℓ,ℓ+1)
i ) = {v0,Γ

(−1,0),Γ(j+1,j+2)}, j = 0, . . . , m− 2. (19)

This is confirmed easily with the help of Lemma 2. Note that the RS set for j = m − 2
contains only the edge Γ(−1,0) = Γ(m−1,m) and the vertex v0. Finally, adding the last
extended edge function produces a C1-smooth function since

R(
m−1⊕

ℓ=0

X(ℓ,ℓ+1)y
(ℓ,ℓ+1)
i ) = ∅. (20)

The remaining edge is eliminated according to Lemma 2 and the vertex v0 is not contained
in the RS-set anymore since the gradient of the resulting function takes the values (0, 0),
(1, 0) and (0, 1) at v0 for i = 1, 2 and 3, respectively.

In addition to the proper vertex functions, we define m twist vertex basis functions,

B(X(ℓ,ℓ+1)y
(ℓ,ℓ+1)
4 ⊕X(ℓ+1,ℓ+2)y

(ℓ+1,ℓ+2)
5 ), ℓ = 0, . . . , m− 1. (21)

These functions are C1-smooth on Ω since their RS sets are empty according to Lemma 2.
As an example, Fig. 6 shows the 8 vertex basis functions for an inner vertex v0 of

valence 5.

Boundary vertex. A slight modification of this construction is needed to obtain the vertex
basis functions at a boundary vertex v0 of valence m + 2 with m ≥ 2. We assume that
the m+1 neighboring patches Ω(ℓ), ℓ = 0, . . . , m, are ordered counterclockwise around the
vertex v0, see Fig. 5 (right). Again, we denote by y

(ℓ,ℓ+1)
i the spline coefficient vector of

the edge basis function of type Yi for the two-patch subdomain Ω(ℓ,ℓ+1).
The RS sets of the extended edge functions are the same as in (16) and (17), except

for the RS sets

R(X(0,1)y
(0,1)
i ) = {v0,Γ

(1,2)}, R(X(m−1,m)y
(m−1,m)
i ) = {v0,Γ

(m−2,m−1)}, i = 1, 2, 3,
(22)

and
R(X(0,1)y

(0,1)
5 ) = ∅, R(X(m−1,m)y

(m−1,m)
4 ) = ∅, (23)

which correspond to the two-patch subdomains Ω(0,1) and Ω(m−1,m).
We define 3 proper vertex basis functions and m − 2 twist vertex basis functions for

ℓ = 1, . . . , m− 2 as before. In addition we obtain two twist vertex basis functions, which
are simply the extended functions

BX(0,1)y
(0,1)
5 and BX(m−1,m)y

(m−1,m)
4 . (24)

All these functions are C1-smooth on Ω.
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Proper vertex basis functions

Twist vertex basis functions

Twist vertex basis functions

Figure 6: The 8 vertex basis functions (3 proper vertex basis functions and 5 twist vertex basis functions)
at an inner vertex of valence 5 for d = 4.

4.4. Basis of the space

The previous sections described the construction of different kinds of C1-smooth geo-
metrically continuous isogeometric functions on Ω. We categorize these functions into four
sets Hi (i = 1, . . . , 4) according to their construction.

The first set H1 consists of the extended patch basis functions with only one non-zero
spline coefficient b

(ℓ)
i which satisfies that (ℓ, i) 6∈ IΓ(e) for e = 1, . . . , E. The number of

these functions for each geometry mapping G(ℓ), ℓ = 1, . . . , P , depends on the number of
interfaces (i.e. edges) of the patch G(ℓ) with its neighbors. In detail, this number ν(ℓ) is
given by

ν(ℓ) =





(d− 1 + k(d− 1))(d+ 1 + k(d− 1)) for one interface,

(d− 1 + k(d− 1))2 for two interfaces with a common vertex,

(d− 3 + k(d− 1))(d+ 1 + k(d− 1)) for two interfaces without a common vertex,

(d− 3 + k(d− 1))(d− 1 + k(d− 1)) for three interfaces, and

(d− 3 + k(d− 1))2 for four interfaces.
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The total number is obtained by summing up the individual contributions,

#H1 =
P∑

ℓ=1

ν(ℓ). (25)

The second set H2 contains the (2d−9)+(2d−4)k extended edge basis functions of type A
and B for each edge Γ(e), e = 1, . . . , E. Therefore,

#H2 = E((2d− 9) + (2d− 4)k). (26)

The next set H3 contains the 5 extended edge basis functions of type L for each boundary
vertex of valence three, thus

#H3 = 5R, (27)

where R is the number of different boundary vertices of valence three.
Finally, the set H4 contains the 3 + m vertex basis functions for each inner vertex of

valence m ≥ 3, and the 3 + (m − 1) vertex basis functions for each boundary vertex of
valence m ≥ 4. Therefore,

#H4 =
∑

v:inner vertex

(3 +mv) +
∑

v:boundary vertex

(3 +mv − 1), (28)

where mv is the valence of the vertex v.
Clearly, the four sets are mutually disjoint. We consider the union H = ∪4

i=1H
i.

Theorem 1. The functions in H form a basis of the space V of C1-smooth geometrically

continuous isogeometric functions on Ω. The dimension V is thus equal to

dimV =

4∑

i=1

#Hi. (29)

proof. We consider a function w ∈ V . It possesses a unique representation with spline
coefficients (b

(ℓ)
i )(ℓ,i)∈I . We show that this function can be represented as a linear com-

bination of functions in H. This is proved repeatedly subtracting linear combinations of
functions of H from the function w until the null function is obtained.

1. We consider all inner vertices and all boundary vertices of valence other than three.
For each such vertex, the gradient and the value of w at the vertex determines a
unique linear combination of the three proper vertex basis functions. Subtracting all
these linear combinations from w creates a function w′ which has zero values and
gradients at these vertices.

2. Considering again the inner vertices and boundary vertices of valence other than
three. For each such vertex, the spline coefficient of w′ at the vertex and the first
neighboring spline coefficients along edges are all zero. The remaining spline coeffi-
cients in the one-ring neighborhood correspond to the twist vertex basis functions.
Subtracting a suitable linear combination of those (i.e., multiplied by the associated
spline coefficients) creates a function w′′ which has only zero spline coefficients in the
1-ring neighborhoods of the considered vertices.
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3. Now we consider all inner edges, one by one. Subtracting a suitable linear com-
bination of edge basis functions of types A and B (plus five extended edge basis
functions of type L for each boundary vertex of valence 3 if present) creates a func-
tion w′′′ which has only zero spline coefficients (ℓ, i) ∈ IΓ(e) , e = 1, . . . , E. This is
guaranteed to work since these functions generate all spline coefficients of C1-smooth
isogeometric functions on two-patch domains in the vicinity of the common edge, see
Section 3.2.

4. Finally we represent w′′′ as a linear combination of extended patch basis functions.

The linear independence of H is inherited from the linear independence on two-patch
domains, due to the disjoint supports in coefficient space. For the proper vertex and twist
vertex functions, this is guaranteed by their construction, as they interpolate characteristic
data for values, gradients, and mixed derivatives.

Any function w ∈ V belongs to H2(Ω), since it is globally C1-smooth and piecewise C∞-
smooth. Thus we may use them to solve higher order partial differential equations over
multi-patch domains. This is presented in the following section.

5. Examples

We present examples of using C1-smooth geometrically continuous isogeometric func-
tions on different multi-patch domains to perform L2 approximation, to solve numerically
Poisson’s equation and to numerically solve the biharmonic equation. These problems
have been described in some detail in [16, Section 4.2-4.4] for two-patch domains. We now
consider the extension to the multi-patch case. All integrals are computed by means of
Gaussian quadrature with (d+ 1)2 points for each spline element.

The first numerical examples (Examples 2-4) analyzes the approximation power of C1-
smooth geometrically continuous isogeometric functions on multi-patch domains. We first
present the multi-patch domains which are used for solving the corresponding numerical
problems in these examples.

Example 1. We consider three different multi-patch domains Ω, see Fig. 7, consisting of
three, four and five quadrilateral patches Ω(ℓ), respectively. The coordinates of the ver-
tices vi of the single quadrilateral patches are presented in Appendix A. The corresponding
geometry mappings G(ℓ) of the domains Ω are bilinear parameterizations, which are rep-
resented as Bézier patches of degree (d, d) for d = 3, 4. We perform dyadic h-refinement
by considering values k = 2λ − 1 for suitable values of λ. The resulting refined geometry
mappings are used to construct C1-smooth geometrically continuous basis functions as
described in the previous section. Note that this construction requires λ > 1 for d = 3
and λ > 0 for d = 4. A different construction (not presented here) yields a basis for the
remaining values of λ.

The resulting spaces of isogeometric basis functions are denoted by Vh, where h =
O(2−λ). In addition, we denote by V0,0h and V1,0h, those subspaces of Vh which satisfy
homogeneous boundary conditions of order 0 and 1, respectively.
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Figure 7: Computational domains Ω, which are defined in Example 1 and Appendix A, and which are
used for numerically solving various partial differential equations in the Examples 2-4.

We start with the L2 approximation of a function:

Example 2. We approximate the function

z(x1, x2) = 2 cos(2x1) sin(2x1), (30)

defined on the three computational domains Ω, shown in Fig. 7, by a function uh ∈ Vh by
solving the L2 minimization problem

‖uh − z‖20 =

∫

Ω

(uh(x)− z(x))2dx → min
uh∈Vh

. (31)

The detailed isogeometric formulation of the problem (31) can be found in [16, Section
4.2].

The results, reported in Fig. 8, confirm the optimal approximation order with respect
to the H0 (L2) norm and indicate an estimated growth rate of O(1) for the condition
numbers of the diagonally scaled mass matrices, cf. [4].

We continue with solving Poisson’s equation on the three multi-patch domains Ω shown
in Figure 7:

Example 3. We consider the Poisson problem

{
△u(x) = −f(x) on Ω
u(x) = 0 on ∂Ω

(32)

with f ∈ H0(Ω) for the unknown function u ∈ H1
0 . By using the weak formulation and

Galerkin projection (cf. [8]) we obtain the following problem: Find uh ∈ V0,0h by solving
the system of equations

∫

Ω

(∇uh(x))
T∇vh(x)dx =

∫

Ω

f(x)vh(x)dx (33)
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Figure 8: L2 approximation on the three computational domains shown in Fig. 7. Exact solutions (30)
(top row), estimated convergence rates (center) and estimated growth of the condition numbers (bottom
row). See Example 2.
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for all vh ∈ V0,0h. The detailed isogeometric formulation of the problem (33) is presented
in [16, Section 4.3].

We solve the problem (33) for the three multi-patch domains with the exact solutions

u(x1, x2) =
1

C

n∏

i=1

ei(x1, x2), (34)

where n is equal to the number of boundary edges of the corresponding domain, the ei

are the linear equations of the boundary edges obtained via their Hesse normal form with
outward oriented normal, and C is equal to 0.5 106 for the three-patch domain and equal
to 108 for the four- and five-patch domain. These functions u, which are visualized in
Fig. 9 (top row), satisfy the homogeneous boundary conditions of order 0. The numerical
results, which are reported in Fig. 9, confirm the optimal approximation order with respect
to H i-norms, i = 0, 1, and indicate an estimated growth rate of O(h−2) for the condition
numbers of the diagonally scaled system matrices, cf. [4].

We also solve the biharmonic equation on the three multi-patch domains Ω shown in
Figure 7:

Example 4. We consider for the unknown function u ∈ H2
0 the first biharmonic boundary

value problem {
△2u(x) = f(x) on Ω

u(x) = ∂u
∂n

(x) = 0 on ∂Ω
(35)

with f ∈ H0(Ω). Using the weak formulation and Galerkin projection (cf. [8]) leads to the
problem of finding uh ∈ V1,0h by solving the system of equations

∫

Ω

△uh(x)△vh(x)dx =

∫

Ω

f(x)vh(x)dx (36)

for all vh ∈ V1,0h. The detailed isogeometric formulation of the problem (36) can be found
in [16, Section 4.4].

We solve the problem (36) for the three multi-patch domains with the right side func-
tions determined by the exact solutions ũ = u2, where u is given by (34). These functions ũ
fulfill the homogeneous boundary conditions of order 1. The numerical results indicate op-
timal convergence rates in the H inorms, i = 0, 1, 2, and show an estimated growth rate
of O(h−4) for the condition numbers of the diagonally scaled system matrices (cf. [4]), see
Fig. 10 and Table 1.

So far, the constructions described in this paper are limited to bilinearly parameterized
multi-patch domains. Two approaches for extending the applicability have been identified
in [16, Section 3.4]. We present one example for each of them:

Example 5. A computational domain with a hole can be modeled by four quadrilateral
patches, see Fig. 11 (left). We relaxed the requirement of bilinear patches by modifying the
locations of the control points that do not affect the edge and vertex basis functions. More

21



three-patch four-patch five-patch

1

4

0 1 2 3 4 5

1

0.01

0.0001

1.´10-6

1.´10-8

Level

L
og
HH

0 -
er

ro
rL

1

5

0 1 2 3 4 5

1

0.01

0.0001

1.´10-6

1.´10-8

1.´10-10

1.´10-12

Level

L
og
HH

0 -
er

ro
rL

1
3

0 1 2 3 4 5

1

0.01

0.0001

1.´10-6

1.´10-8

Level

L
og
HH

1 -
er

ro
rL

1
4

0 1 2 3 4 5

1

0.01

0.0001

1.´10-6

1.´10-8

1.´10-10

Level

L
og
HH

1 -
er

ro
rL

1

2

0 1 2 3 4 5

100

1000

10 000

Level

L
og
HΚ
HD
-

1 2
SD
-

1 2
LL

1

2

0 1 2 3 4 5

100

1000

10 000

Level

L
og
HΚ
HD
-

1 2
SD
-

1 2
LL

degree d = 3 degree d = 4

Figure 9: Solving the Poisson problem on the three computational domains shown in Fig. 7. Exact
solutions (34) (top row), estimated convergence rates (second and third row) for different norms and
estimated growth of the condition numbers (bottom row). See Example 3.

22



three-patch four-patch five-patch

1

4

0 1 2 3 4 5

1

0.01

0.0001

1.´10-6

Level

L
og
HH

0 -
er

ro
rL

1

5

0 1 2 3 4 5

1

0.01

0.0001

1.´10-6

1.´10-8

Level
L

og
HH

0 -
er

ro
rL

1

3

0 1 2 3 4 5

1

0.01

0.0001

1.´10-6

Level

L
og
HH

1 -
er

ro
rL

1

4

0 1 2 3 4 5

1

0.01

0.0001

1.´10-6

1.´10-8

Level

L
og
HH

1 -
er

ro
rL

1
2

0 1 2 3 4 5

1

0.01

0.0001

1.´10-6

Level

L
og
HH

2 -
er

ro
rL

1
3

0 1 2 3 4 5

1

0.01

0.0001

1.´10-6

1.´10-8

Level

L
og
HH

2 -
er

ro
rL

1

4

0 1 2 3 4 5

1000

10 000

100 000

1 000 000

10 000 000

Level

L
og
HΚ
HD
-

1 2
SD
-

1 2
LL

1

4

0 1 2 3 4 5

1000

10 000

100 000

1 000 000

10 000 000

Level

L
og
HΚ
HD
-

1 2
SD
-

1 2
LL

degree d = 3 degree d = 4

Figure 10: Solving the biharmonic equation on the three computational domains shown in Fig. 7. Exact
solutions (top row), estimated convergence rates (second to fourth row) for different norms and estimated
growth of the condition numbers (bottom row). See Example 4 and Table 1.
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Bicubic Biquartic
e.c.r. H0-norm e.c.r. H1-norm e.c.r. H2-norm rate κ e.c.r. H0-norm e.c.r. H1-norm e.c.r. H2-norm rate κ

λ Three-patch domain
0/1 - - - - 4.21 3.64 2.75 -
1/2 4.84 4.08 2.73 - 4.61 3.69 2.61 2.43
2/3 3.99 3.27 2.08 2.36 5.25 4.21 3.13 3.19
3/4 4.49 3.49 2.16 3.01 5.47 4.34 3.19 3.74
4/5 4.51 3.32 2.09 3.65 5.5 4.26 3.12 3.95

λ Four-patch domain
0/1 - - - - 1.48 1.9 1.93 -
1/2 3.06 3.04 2.54 - 3.91 3.78 2.79 2.06
2/3 3.25 3.19 2.26 2.08 4.6 4.39 3.1 2.12
3/4 3.86 3.71 2.22 2.08 4.89 4.53 3.12 2.42
4/5 4.03 3.72 2.09 2.27 5.03 4.42 3.08 3.08

λ Five-patch domain
0/1 - - - - 2.71 2.98 2.74 -
1/2 3.47 3.52 2.94 - 4.67 4.3 3.04 2.37
2/3 3.92 3.78 2.47 2.26 5.21 4.47 3.14 3.17
3/4 4.12 3.73 2.17 2.62 5.42 4.33 3.11 3.78
4/5 4.08 3.41 2.05 3.34 5.33 4.19 3.07 3.98

Table 1: The estimated convergence rates (e.c.r.) in the Hi-norms, i = 0, 1, 2, and estimated growth rates
for the condition numbers κ of the diagonally scaled system matrices by solving the biharmonic equation
on three multi-patch domains in Example 4. Compare Fig.10.

precisely, the domain is modeled by considering four two-patch domains with geometric
continuity across their internal interface and merging adjacent patches with standard C1-
smoothness. This allows us to construct the computational domain with a curved boundary
around the hole. Slightly different to Example 3, we solve Poisson’s equation with the right
side function f and Dirichlet boundary conditions obtained from the exact solution

u(x1, x2) =
1

20000
(x2 − 5)(x2 + 4)(23 +

9x1

2
− x2)(23−

9x1

2
− x2)(x1

2 + x2
2 − 2), (37)

see Fig. 11 (right). By using biquartic functions the resulting relative H0- and H1-error
for λ = 2 are equal to 8.25e-05 and 3.62e-04, respectively.

A different approach has been used in the final example:

Example 6. The computational domain Ω, which is shown in Fig. 12 (bottom left), roughly
resembles a car part. It has been constructed by using the second generalization described
in [16, Section 3.4]. More precisely, we first consider the target geometry G̃ given in
Fig. 12 (top right), which represents the desired car part. Thereby, the target geometry G̃

consists of five patches G̃
(ℓ)

∈ S4
3 × S4

3 . For this target geometry we choose a bilinear
reference geometry Ḡ, see Fig.12 (top left), whose geometry mapping Ḡ also consists of

five patches Ḡ
(ℓ)

∈ S4
3×S4

3 . The reference geometry determines a basis of the corresponding
space V̄ of C1-smooth geometrically continuous isogeometric functions. We then use these
functions to perform L2 approximation for each coordinate function of the target geometry
to obtain a parametrization G of the computational domain Ω. The obtained relative H0-
errors with respect to the two coordinates are equal to 6.36e-04 and 8.89e-04, respectively.
The geometry mapping G is thus contained in the space V̄ × V̄ . The coefficients of the
associated basis functions are inherited from the reference geometry.
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Figure 11: Solving Poisson’s equation on a four-patch computational domain with hole (left) with the
right side function f and Dirichlet boundary conditions determined by the exact solution (37) (right). See
Example 5.

#ptchs #fcts rel. H0-error e.c.r. H0-norm rel. H1-error e.c.r. H1-norm
80 808 1.66744e-03 - 7.30986e-03 -
320 3048 5.44177e-05 4.93741 4.68758e-04 3.96293
1280 11848 1.47709e-06 5.20324 2.91532e-05 4.00711
5120 46728 3.7166e-08 5.31263 1.66268e-06 4.13207

Table 2: The obtained relative Hi-errors, i = 0, 1, with the corresponding estimated convergence
rates (e.c.r.) by solving the Poisson problem in Example 6.

We solve Poisson’s equation with the right side function f and Dirichlet boundary
conditions determined by the exact solution

u(x1, x2) =
1

5000
(4−x2)(4+

5x1

3
−x2)(

3

2
−x2)(x1+5)(−

7

2
−x2)(x1

2+(x2+
7

2
)2−4)(x1−5).

(38)
Table 2 shows the resulting relative H i-errors, i = 0, 1, with the corresponding estimated
convergence rates.

6. Conclusion

We constructed bases for bicubic and biquartic C1-smooth geometrically continuous
isogeometric functions on bilinearly parameterized multi-patch domains Ω ⊂ R

2. The re-
sulting basis functions are obtained by suitably combining the C1-smooth functions from
the two-patch case (cf. [16]) and can be easily generated by means of explicit formu-
las for their spline coefficients. We employed these basis functions to perform numerical
experiments, which showed optimal rates of convergence. Our construction guarantees
that polynomials of degree d on the physical domain are contained in the isogeometric
discretization space, if the physical domain is bilinearly parameterized.

The paper leaves several open issues for possible future research. One such topic con-
sists in the theoretical investigation of the approximation power of the space of C1-smooth
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Figure 12: Solving Poisson’s equation on a five-patch computational domain (bottom left) with the right
side function f and Dirichlet boundary conditions obtained from the exact solution (38) (bottom right).
The computational domain is constructed by performing L2 approximation with the help of a reference
(top left) and target geometry (top right). See Exampe 6 and Table 2.

geometrically continuous isogeometric functions defined on bilinear multi-patch domains.
First steps have been presented recently in [7] where necessary conditions (which are sat-
isfied by our construction) for optimal approximation properties were identified.

Another challenging topic is the construction of geometrically continuous isogeometric
functions of higher degree and/or global smoothness. In addition, the possibly finding of
non-negative geometrically continuous isogeometric basis functions, satisfying the partition
of unity property, would allow an interactive geometric design.

We have already demonstrated the potential of the geometrically continuous isogeo-
metric functions by solving the biharmonic equation. The exploration of further possible
applications, which require these functions of higher smoothness, is of interest, too. Finally,
the extension of the framework to the three-dimensional case will be considered.

Acknowledgment. The authors wish to thank the anonymous reviewers for their com-
ments that helped to improve the paper. This work was supported by the Austrian Science
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Appendix A. Setting of the multi-patch domains defined in Example 1

The coordinates of the vertices of the three multi-patch domains presented in Exam-
ple 1, which are used for solving numerical problems in the Examples 2-4, are as follows:

• Three-patch domain:

v0 = (− 1
10
,− 3

20
), v1 = (15

4
, 2), v2 = ( 1

20
, 77
20
), v3 = (−71

20
, 2),

v4 = (−13
4
,−11

5
), v5 = (− 3

20
,−19

5
), v6 = (37

10
,−37

20
).

(A.1)

• Four patch domain:

v0 = (−1
5
, 1
5
), v1 = (21

5
,−1

5
), v2 = (37

10
, 7
2
),

v3 = (1
5
, 41
10
), v4 = (−4, 18

5
), v5 = (−43

10
,− 1

10
),

v6 = (−39
10
,−39

10
), v7 = ( 3

10
,−17

4
), v8 = (39

10
,−19

5
).

(A.2)

• Five-patch domain:

v0 = (0, 0), v1 = (24
5
, 0), v2 = (9

2
, 32
10
), v3 = (8

5
, 31
10
),

v4 = (− 7
10
, 41
10
), v5 = (−33

10
, 14

5
), v6 = (−53

10
, 4
5
), v7 = (−7

2
,−9

5
),

v8 = (−3,−41
10
), v9 = (4

5
,−9

2
), v10 = (21

5
,−27

10
).

(A.3)

Appendix B. Edge basis functions

We present simple explicit formulas for the spline coefficients of the different types of
edge basis functions for bilinearly parameterized two-patch domains Ω, see Section 3.2.
Mathematica templates for computing these spline coefficients with respect to local ge-
ometries, described in the following paragraph, can be found under http://www.ag.jku.
at/pubs/Template_Degree3.nb and http://www.ag.jku.at/pubs/Template_Degree4.

nb for d = 3 and d = 4, respectively.

Local geometries. The values bi of their spline coefficients are specified with respect to local
geometries of two, three or four pairs of adjacent elements along the common edge Γ(1,2),
compare Fig.3, where the vertices

(0, 0),





(0, 2)
(0, 3)
(0, 4)



 , (x0, y0), (x1, y1), (x2, y2) and (x3, y3)

are the vertices G(ℓ)(·, ·), ℓ = 1, 2, of the involved bilinear elements in a suitably chosen
local coordinate system. In addition, we assume that the functions of type L, U, and Y
are constructed at the local vertex (0, 0). To keep all formulas short and compact, we use
the following abbreviations:

d̃ = 5− d, αi,j = xiyj − xjyi, βi,j = xj − xi

and
γi,j = αi,j + βi,j, δi,j = αi,j + 2βi,j, εi,j = αi,j + 3βi,j, ηi,j = αi,j + 4βi,j

for i, j ∈ {0, . . . , 3} with i < j.
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Basis functions of type A, B, L and U for d = 3.

• Type A:

b6 =
x0

3x2+2x3
, b8 =

x2

3x2+2x3
, b9 =

3x0+2x1

3x2+2x3
, b11 = 1, b12 =

2x0+3x1

3x2+2x3
, b14 =

2x2+3x3

3x2+2x3
,

b15 =
x1

3x2+2x3
, b17 =

x3

3x2+2x3
.

(B.1)

• Type B:

b8 =
α0,2

12x0
, b9 =

α0,1

8x0
, b10 =

1
2
, b11 =

7α0,2+3α0,3

24x0
,

b12 =
3α0,3x0+α0,3x1+8α0,1x3

48x0x3
+

3β0,3+β1,3

12x3
, b13 = 1,

b14 =
3α0,3x2+8α0,2x3+9α0,3x3

48x0x3
+

β2,3

12x3
, b15 =

9α0,3x0+11α0,3x1−8α0,1x3

48x0x3
+

9β0,3+11β1,3

12x3
,

b16 = 1, b17 =
9α0,3x2−8α0,2x3+3α0,3x3

48x0x3
+

3β2,3

4x3
, b18 =

3η0,3+7η1,3
24x3

, b19 =
1
2
,

b20 =
η2,3
8x3

, b21 =
η1,3
12x3

.

(B.2)

• Type L1 and U1:

b0 =
2γ0,2+γ0,3
2x2+x3

, b1 = 1, b2 =
γ23

2x2+x3
, b3 =

4γ0,2+2γ0,3+2γ1,2+γ1,3
18x2+9x3

. (B.3)

• Type L2 and U2:

b1 = 1, b2 = −γ0,2
x0

, b3 = −γ0,1
9x0

, b5 = −2γ0,2+γ0,3
9x0

. (B.4)

• Type L3 and U3:

b2 =
α0,2

x0
, b3 =

δ0,2+2δ0,3
3x2+6x3

+ α0,1

9x0
, b4 = 1, b5 =

−2α0,2β2,3+7α0,3x2+2α0,3x3

9x0(x2+2x3)
+ 4β2,3

3x2+6x3
,

b6 =
11δ0,2+22δ0,3+4δ1,2+8δ1,3

36x2+72x3
, b7 =

1
2
, b8 =

δ2,3
2x2+4x3

, b9 =
δ0,2+2δ0,3+2δ1,2+4δ1,3

36x2+72x3
.

(B.5)

• Type L4 and U4:

b3 = 1, b5 =
x2

x0
, b6 =

11x0+4x1

12x0
, b8 =

11x2+4x3

12x0
, b9 =

x0+2x1

12x0
, b11 =

x2+2x3

12x0
. (B.6)

• Type L5 and U5:

b5 =
2α0,2

3x0
, b6 =

2α0,1

9x0
+

ε0,3
9x3

, b7 = 1, b8 =
2α0,3x2+9α0,2x3+4α0,3x3

18x0x3
+

β2,3

3x3
,

b9 =
3ε0,3x0+2ε0,3x1−ε0,1x3

9x0x3
− β0,1

3x0
, b10 =

4
3
, b11 =

6α0,3x2−5α0,2x3+2α0,3x3

18x0x3
+

β2,3

x3
,

b12 =
2ε0,3+3ε1,3

9x3
, b13 =

2
3
, b14 =

2ε2,3
9x3

, b15 =
ε1,3
9x3

.

(B.7)

Basis functions of type A, B, L and U for d = 4.

• Type A1:

b6 = 1, b8 =
x2

x0
, b9 = 1 + 3x1

4x0
, b11 =

4x2+3x3

4x0
, b12 =

x1

4x0
, b14 =

x3

4x0
. (B.8)
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• Type A2:

b8 =
α0,2

2x0
, b9 =

3α0,1

8x0
+

δ0,3
8x3

, b10 = 1, b11 =
α0,3x2+3α0,2x3+3α0,3x3

8x0x3
+

β2,3

4x3
,

b12 =
3α0,3x0+4α0,3x1−3α0,1x3

8x0x3
+

3β0,3+4β1,3

4x3
, b13 = 1, b14 =

3α0,3x2−3α0,2x3+α0,3x3

8x0x3
+

3β2,3

4x3
,

b15 =
δ13
2x3

.

(B.9)

• Type A3:

b9 =
x0

4x3
, b11 =

x2

4x3
, b12 =

3x0+4x1

4x3
, b14 = 1 + 3x2

4x3
, b15 =

x1

x3
, b17 = 1. (B.10)

• Type B:

b11 =
α0,2

16x0
, b12 =

α0,1

6x0
, b13 =

1
2
, b14 =

13α0,2+8α0,3

48x0
, b15 =

ε0,3(2x0+x1)+ε0,1x3

12x0x3
− β0,1

2x0
,

b16 = 1, b17 =
2ε0,3(x2+x3)−ε0,2x3

12x0x3
− β0,2+2β0,3

4x0
, b18 =

8ε0,3+13ε1,3
48x3

, b19 =
1
2
, b20 =

ε2,3
6x3

,

b21 =
ε1,3
16x3

.

(B.11)

• Type L1 and U1:

b0 =
γ0,2+γ0,3
x2+x3

, b1 = 1, b2 =
γ2,3

x2+x3
, b3 =

γ0,2+γ0,3+γ1,2+γ1,3
8x2+8x3

. (B.12)

• Type L2 and U2:

b1 = 1, b2 = −γ0,2
x0

, b3 = −γ0,1
8x0

, b5 = −γ0,2+γ0,3
8x0

. (B.13)

• Type L3 and U3:

b2 =
α0,2

x0
, b3 =

6γ0,2x0+6γ0,3x0+α0,1(x2+x3)

8x0x2+8x0x3
, b4 = 1,

b5 =
α0,2x2+7α0,3x2−5α0,2x3+α0,3x3

8x0x2+8x0x3
+ 3β2,3

4x2+4x3
, b6 =

γ0,2+γ0,3+γ1,2+γ1,3
4x2+4x3

.
(B.14)

• Type L4 and U4:
b3 = 1, b5 =

x2

x0
, b6 =

x0+x1

3x0
, b8 =

x2+x3

3x0
. (B.15)

• Type L5 and U5:

b5 =
3α0,2

4x0
, b6 =

α0,1

4x0
+ δ0,3

4x3
, b7 = 1, b8 =

2x0β2,3+α0,3(x2+x3)

4x0x3
, b9 =

4δ0,3+3δ1,3
16x3

,

b10 =
1
2
, b11 =

δ2,3
4x3

, b12 =
δ1,3
16x3

.
(B.16)

Basis functions of type Y. The functions of type Y are obtained by linearly combining the
functions of type L, i.e.

Yi =

5∑

j=1

µi
j Lj , i = 1, . . . , 5,

using the following coefficients µi
j:
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• type Y1:

µ1
1 =

d̃x2+x3

d̃γ0,2+γ0,3
, µ1

2 =
d̃(γ0,2−x2)+γ0,3−x3

d̃γ0,2+γ0,3
, µ1

3 = 1,

µ1
4 = − (2d−5)α0,2+(d−1)α0,3+dβ0,2−(6−d)x0+(12−2d)x3

dx2+(12−2d)x3
, µ1

5 =
(2d−5)α0,2+dβ0,2

(d−1)α0,2
.

(B.17)

• type Y2:

µ2
1 =

(d̃x2+x3)(x0 cosϕ+y0 sinϕ)
(12−2d)γ0,2+dγ0,3

, µ2
2 = − (d̃x2+x3)(x0 cosϕ+y0 sinϕ)

(12−2d)γ0,2+dγ0,3
, µ2

3 =
sinϕ

d
,

µ2
4 = − (d̃x0+x1)(x2+d̃x3) cosϕ+(−(x2+d̃x3)(−6+(4d−11)y0−y1)+(3d−6)x0((4d−18)+y2+d̃y3)) sinϕ

(5d+12)x2+(120−22d)x3
,

µ2
5 =

(−x1x2+x0x3) cosϕ+x2(−6+(4d−11)y0−y1)+x0(6−(4d−11)y2+y3)) sinϕ

6dα0,2
.

(B.18)

• type Y3:

µ3
1 =

(d̃x2+x3)(y0 cosϕ−x0 sinϕ)
(12−2d)γ0,2+dγ0,3

, µ3
2 = − (d̃x2+x3)(y0 cosϕ−x0 sinϕ)

(12−2d)γ0,2+dγ0,3
, µ3

3 =
cosϕ
d

,

µ3
4 = −−(d̃x0+x1)(x2+d̃x3) sinϕ+(−(x2+d̃x3)(−6+(4d−11)y0−y1)+(3d−6)x0((4d−18)+y2+d̃y3)) cosϕ

(5d+12)x2+(120−22d)x3
,

µ3
5 =

(x1x2−x0x3) sinϕ+(x2(−6+(4d−11)y0−y1)+x0(6−(4d−11)y2+y3)) cosϕ
6dα0,2

.

(B.19)

• type Y4:
µ4
1 = 0, µ4

2 = 0, µ4
3 = 0, µ4

4 = 1, µ4
5 = − dx2

(d−1)α0,2
. (B.20)

• type Y5:
µ5
1 = 0, µ5

2 = 0, µ5
3 = 0, µ5

4 = 0, µ5
5 =

dx0

(d−1)α0,2
. (B.21)

Note, that ϕ is the angle between the vector (1, 0) and the directional vector of the common
edge Γ(1,2) with respect to global coordinates.
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