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BERT JÜTTLER, MARGOT RABL

Institute of Applied Geometry, Johannes Kepler University
Altenberger Str. 69, 4040 Linz, Austria

bert.juettler@jku.at, margot.rabl@jku.at

ZBYNEK Š́IR
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Boundary approximation of planar shapes by circular arcs has quantitative and qualitative advantages
compared to using straight-line segments. We demonstrate this by way of three basic and frequent
computations on shapes – convex hull, decomposition, and medial axis. In particular, we propose a
novel medial axis algorithm that beats existing methods in simplicity and practicality, and at the same
time guarantees convergence to the medial axis of the original shape.
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1. Introduction

The plain majority of algorithms in computational geometryhave been designed for pro-
cessinglinear objects, like lines, planes, or polygons. On the one hand, this is certainly due
to the fact that many interesting and deep computational andcombinatorial questions do
arise already for inputs of this simple form. Again, the pragmatic reason is that algorithms
for linear objects are usually both easier to develop and simpler to implement. To make
things work for nonlinear objects, which arise frequently in practical settings, such objects
are usually approximated in a piecewise-linear manner and up to a tolerable error. Existing
approaches15 to directly extending polygonal algorithms to curved objects are rare and,
due to their generality, of limited practical use.
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In its simplest form, the input object is a single planar shape,A, with curved and con-
nected boundary∂A. Frequent tasks to be performed onA – each being prior to a variety of
more involved computations – include constructing the convex hull ofA, decomposingA
into primitives, and calculating the medial axis ofA. These tasks are well investigated in
the case of polygonal shapes. In certain situations, however, the number of line segments
required for approximating∂A with high accuracy may be prohibitively large. Even more
seriously, making a piecewise-linear approximation of∂A and invoking a polygonal-shape
algorithm may generate results that are not homeomorphic tothe correct result; the medial
axis is a well-known example.

The intention of the present paper is to highlight the use of circular arcs for boundary
representation. It is well known that for nonlinear curve segments the approximation order
increases in comparison to using straight-line segments. For instance, it has been conjec-
tured by Höllig and Koch28, and proved ford = 2, that polynomial curves of degreed in
the plane have approximation order2d. Many related results exist in the rich literature on
geometric interpolation, including results on circular arcs34.

In particular, if a given accuracyε is achieved by usingN line segments, then as few as
n = Θ(N2/3) circular arcs can accomplish the same. This has been an issuein approxima-
tion theory, but in computational geometry this gain seems to have been less valued than
eliminating small factors in the complexity of the subsequently applied algorithm. Bound-
ary approximation by circular arcs may be of advantage also in a qualitative respect. For
instance, it avoids the mentioned structural inconsistencies in medial axis computations,
and it supports the computation of shape offsets, as the class of shapes bounded by circular
arcs is closed under offset operations.

We will show that for the three basic problems mentioned above – convex hull, de-
composition, and medial axis – simple and practical, thoughstill efficient, algorithms exist
that work for circular arc inputs. The first two problems are less demanding; we treat them
mainly to point out the respective favorable (in our opinion) approach, whose practicality
shall encourage the use of circular arc boundary representation. Nevertheless, substantial
differences to the polygonal case occur; see below. For computing the medial axis, we
propose a novel and extremely simple algorithm that is basedon a known (though less rec-
ognized) decomposition lemma. After having computed a purely combinatorial description
of the medial axis using tailored shape splitting, its individual parts (conics and line seg-
ments, like in the polygonal case) are re-assembled in trivial merge steps. The algorithm
and its analysis are not specific to circular arc inputs.

Suitable circular arc approximations of shapes can be foundin linear time. In summary,
the obtained shape processing algorithms are superior in runtime to their line segment based
counterparts, retain much (if not all) of their simplicity,and are even more natural in some
cases.

2. Outline and Background

We briefly describe the contributions of this paper and relate them to existing literature.
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Section 3 deals with approximating general curves by suitable primitives. This is a
topic of importance in geometric modeling and in CAD and NC applications, and many
quite recent results are available16,26,35,36,38,41,43. Our aim is to approximate a paramet-
ric curvec(t) by circular arcs. We assume thatc(t) is piecewise-polynomial of constant
degree, and we use biarcs (pairs of smoothly joined circulararcs)36,40,41 as primitives.
A straight-forward bisection algorithm for biarc generation already fits our purposes. It
uniquely assigns biarcs to parameter intervals, which facilitates the error evaluation. An
approximating spline curveb of sizen is computed inO(n) time. It fits the input curvec(t)

in slope at biarc endpoints, and can be tuned to matchc(t) in curvature at certain points
(a fact being important in subsequent medial axis computations). Though not being optimal
in the number of arcs, the approximation order ofb is still three35,41. In contrast, with line
segments one cannot exceed order two, and a polyline of sizeN = Θ(n3/2) is needed to
arrive at the same precision.

The remaining sections propose algorithms forcircular arc shapesA, where the bound-
ary∂A of A is given as a connected curve composed ofn circular arcs. Choice is guided by
efficiency as well as by reducibility to basic operations that have robust implementations18.

Section 4 outlines an algorithm for computing the convex hull of A. This task is one of
the most basic to be performed for a given shape, and has a variety of applications including
shape fitting, motion planning, shape separation, and many others. At least four linear-time
algorithms have been developed for polygonal shapes6,25,33,37. The incremental method
by Melkman37 stands out by its simplicity, and it is this candidate we generalize for circular
arc shapes. Compared to the original setting, two difficulties arise. Deciding inclusion for
a currently inserted arc in the convex hull constructed so far is no trivial test, and the
convex hull cannot be described by a sequence of input vertices of the shape. We show
that a runtime ofO(n) is still possible. The basic subroutine of the algorithm computes the
convex hull of only two circular arcs.

Section 5 deals with shape triangulation, a fundamental building block in algorithms
for decomposition, shortest path finding, and visibility – to name a few. Most existing al-
gorithms are meant for polygonal shapes. They partition a given (simple)N -vertex polygon
into triangles without introducing Steiner points. Efficient candidates are5,9,23,27,32 which
all show anO(N log N) runtime. Theoretically more efficient methods do exist, butwhen
aiming at simplicity, choice should be made from the list above.

When trying to generalize to shapesA bounded by circular arcs, we face two problems.
First of all, if the use of Steiner points is disallowed, thena partition ofA into primitives
bounded by a constant number of circular arcs need not exist.(In certain cases, however,
such a partition ofA will exist, but a partition with straight line segments willnot.) Also,
not all triangulation methods are suited to generalization. This applies, for instance, to
the extremely simple ear cutting method in30 which runs in timeO(r · N), wherer is
the number of reflex vertices ofA. The triangulation algorithm we propose is closest to
Chazelle’s9. It manages with an (almost) worst-case minimal number of Steiner points
on∂A, runs inO(n log n) time, and uses a dictionary as its only nontrivial data structure.
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The produced primitives are arc triangles with at least one straight edge. The most complex
geometric operation is intersecting a circle with a line.

Section 6 is devoted to the medial axis, a frequently used structure associated with a
given input shape. Its main applications include shape recognition, solid modeling, pocket
machining, and others. Interest in mathematical properties of the medial axis and the
Voronoi diagram for general shapes found renewal in recent years3,7,8,11,19,20,39. In our
case, where the shapeA is simply connected and∂A consists ofn circular arcs, its medial
axis M(A) is known to be a tree composed ofO(n) conic edges. Algorithmic work on
the (exact) medial axis either concentrated on the case where A is a polygon9,10,31, or
on general sets of curved arcs2,12,29,39 (and their Voronoi diagram) without, however, ex-
ploiting the fact that the input arcs define a simple curve. Though theoretically efficient as
O(n log n) or better, these algorithms suffer from involved merge or insertion steps which,
even for straight arcs as input, are difficult to implement. In addition, numerical stability
issues arise heavily; intersections of conics have to be determined repeatedly which, when
not calculated exactly, are bound to accumulate the error. If the vertices of the medial axis
are assumed to be known, the in-between edges can be traced numerically12,17. This ap-
proach, however, requires an expensive a-priori analysis of the global connectivity structure
of the medial axis.

We present a simple randomized divide-and-conquer algorithm for computingM(A)

that overcomes these drawbacks. In contrast to comparable algorithms, the costly part is
delegated to the divide step. The geometrically most complex operations in this step are
computing the intersection of two circles. The merge step istrivial: it concatenates two
medial axes. The expected runtime is bounded byO(n3/2) = O(N), but is provably better
for most types of shape. For example,O(n log n) expected time suffices if the diameter
of M(A) is Θ(n). No nontrivial data structures are used.

To guarantee applicability of our methods to approximatingthe medial axes of gen-
eral shapesA, a convergence result is needed. We prove in Section 7 that, for a suitable
approximation of∂A by circular arcs,M(A) is the limit of M(B) when the approximat-
ing arc shapeB converges toA. Related results exist, but either presupposeC2 conditions
on ∂B not attainable by circular arcs8, or concern only subsets of the medial axis7 that
survive after pruning the Voronoi diagram of point samples from ∂A. It is well known3

that medial axis convergence isnot given for polygonal approximations ofA. While cer-
tain conditions on the approximation with circular arcs guarantee convergence, there is no
way to guarantee convergence for point samples or line segments without pruning. If we
do restrict ourselves to the pruned part in the case of a pointsample (theλ-medial axis7),
a data volume ofΘ(n3) = Θ(N2) arises, compared ton circular arcs orN line segments,
for the same approximation quality. In conclusion, circular arcs are the simplest possible
tool for boundary conversion that guarantees a stable medial axis approximation.

We mention that there exist several point-based methods to approximate the medial
axis in 3D. Using a proper subset of the Voronoi facets, chosen via the edges of the dual
Delaunay triangulation, a convergence guarantee when taking anε-sampling can be shown,
see13,14. However, these approaches are not needed for 2D, as the Voronoi diagram vertices
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of a sample already converge to the medial axis in this case.

3. Approximation by Circular Arcs

In order to represent a general shapeA in a form suitable for geometric computations, we
discuss methods for approximating∂A by circular arcs. We assume that∂A is given as a
polynomial spline curve. While particular attention is paid to the cubic case, being the most
popular one in applications21, the methods can be applied to spline curves of any degree.

Several approaches to generating circular arc splines exist; see e.g.35 for a review.
We consider a simple bisection algorithm consisting of two steps, approximation and error
measurement. A geometric primitiveb (an arc or a biarc) is fitted to a segments of the
given curvec(t), and the distance fromb to s is numerically computed. The algorithm is
relatively easy to implement and still adapts the degrees offreedom to the input data. As a
slight disadvantage, the number of primitives (the resulting data volume) is optimal only in
the asymptotic sense.

Define the one-sided Hausdorff distance from a primitiveb to a segments ⊆ c(t) as

δ(b, s) = max
p∈b

min
q∈s

||p − q||.

(We considerb ands as closed sets.) Letε denote the error tolerance to be met by the
algorithm.

Algorithm BISECT(t0, t1)

Constructb
Computeδ = δ(b, c[t0, t1])

If δ ≤ ε then return{b}
Else return BISECT(t0, t0+t1

2 ) ∪ BISECT( t0+t1
2 , t1)

Depending on the primitiveb used, Algorithm BISECT produces splines of different
quality: merely continuous (C0) circular arc splines, or tangent continuous (C1) arc splines.
When being content with the former type, we simply can choosefor b the unique circular
arc passing through the three pointsc(t0), c( (t0+t1)

2 ), andc(t1). To obtainC1 arc splines,
so-called biarcs40 are utilized.

A biarc b consists of two circular arcs with common unit tangent vector at their joint.
Usually,b is described by its sourcex with associated unit tangent vectorvx, and its tar-
get y with unit tangent vectorvy. Given these data, there exists a one-parameter family
of interpolating biarcs. All possible joints are located onthe circleσ passing throughx
andy and having the same oriented angles withvx andvy . Several ways for choosing the
joint m have been proposed; see e.g.36,41. For many applications, takingm = σ ∩ c[t0, t1]

is appropriate. To calculatem in the cubic case, a polynomial of degree4 has to be solved
(where a closed-form solution is still available). The output is aC1 arc spline with all arc
endpoints sitting onc(t).
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n = 4, z = 10 n = 12, z = 100

Fig. 1:z-magnified error forn biarcs

In view of subsequent stable medial axis computations, the choice ofm has to be made
more carefully. Define anapexof c(t) as a local curvature maximum. The apices split the
curvec(t) into pieces of monotonic signed curvature, so-calledspirals. Following 36, we
aim at approximating spirals ofc(t) by circular arc spirals. To this end, we splitc(t) at its
apices. In the cubic case, these points can be found by solving polynomials of degree5.
Now, we exploit that spiral biarcs can be constructed that connect two given pointsx andy,
match unit tangents there, and assume a predefined curvaturein one of them. Letkx andky

be the curvature ofc(t) atx andy, respectively, and supposekx < ky. To match curvature
atx, we choose the radius of the first arc,b1, equal torx = 1/kx. The jointm is obtained by
intersecting the circle supportingb1 with the joint circleσ. According to36, the radii and
curvatures satisfyrx > ry > 1/ky. When starting the next biarc fromy with ry = 1/ky

(unlessy is an apex), monotonicity of signed curvature will be preserved.

Each arc is found inO(1) time, where the constant depends on the degree of the polyno-
mial to be solved. Fig. 1 shows an example of a biarc conversion. The scaled curve normals
visualize the magnified error distribution.

Concerning the error measurement, each produced circular arc bi has to be matched to
its corresponding segments = c[t′0, t

′
1]. This is, of course, trivial when the biarc jointm

has been chosen to lie onc(t). In the case of biarc spirals, we intersectc(t) with the normal
of bi at m. In the case of degree 3 input curves, this leads to a cubic equation. If multiple
solutions within the total biarc interval[t0, t1] exist, then the error is set to∞. Otherwise,
we compute the one-sided Hausdorff distanceδ(bi, s) by substituting the parametric rep-
resentation ofs into the implicit equationK (with leading coefficients1) of the circle
supportingbi. If r is the radius ofK, andd andD are the minimum and maximum values
of (K ◦ c)(t) for t ∈ [t′0, t

′
1], we get

δ(bi, s) ≤ max{|
√

r2 − d − r|, |
√

r2 + D − r|}
and this bound is sharp. Consequently, in the cubic case,δ(bi, s) can be evaluated by solv-
ing a quintic polynomial equation on the interval[t′0, t

′
1]. Alternatively, a simpler upper

bound can be calculated (without polynomial solving) by replacingd andD with the min-
imum and maximum coefficient of the Bernstein-Bézier representation22 of K ◦ c with
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respect to[t′0, t
′
1]. As the length ofs decreases, this bound converges toδ(bi, s). As an-

other simple but important observation, thetwo-sidedHausdorff distance betweenbi ands,
max{δ(bi, s), δ(s, bi)}, vanishes withδ(bi, s) becausebi ands are of constant degree. Thus
controlling the latter distance already ensures thatbi ands areε-close with respect to the
former one.

In summary, when algorithm BISECT spans a binary recursion tree withn leaves (the
returnedn primitives), any of the described types of arc splines can beconstructed inO(n)

time.

Let us discuss the asymptotic behaviour of the numbern for decreasing toleranceε. For
a given curvec(t) with domain[t0, t1], which is assumed to contain neither inflections nor
apices, we consider primitives having approximation orderk. Adapting the analysis in35,41

(as done in the Appendix), we getδ = Θ(hk) for the one-sided Hausdorff distanceδ, pro-
vided thatc(t) is approximated with (small) parameter step sizeh, and thatk is considered
a constant.

This relation implies a general lower bound. Foranyapproximation ofc(t) obtained by
BISECT(t0, t1) usingn primitives with approximation orderk, the largest step size satisfies
∆t ≥ t1−t0

n . Moreover, we haveδ ≤ ε by the terminating condition of the approximation
algorithm. Fromδ = Θ((∆t)k), we getn = Ω(1/ε1/k). On the other hand, the minimum
step size∆′t taken by any algorithm for an intervalI satisfies∆′t ≤ t1−t0

n . Assume we
stop BISECT(t0, t1) with doubled step size2∆′t. Then there exists at least one interval,
for example the one containingI, for whichδ > ε. As we haveδ = Θ((2∆′t)k) it follows
thatn = O(1/ε1/k). We obtain:

Lemma 1. For sufficiently small toleranceε, the numbern of primitives constructed by
algorithm BISECT is asymptotically optimal.

Lemma 1 also holds in the general case wherec(t) contains inflections and apices,
because the resulting number of spirals ofc(t) is independent ofn. In conclusion, to arrive
at toleranceε, Algorithm BISECT needsn = Θ(1/ 3

√
ε) circular arcs (order3), whereas

N = Θ(1/
√

ε) line segments (order2) have to be invested by any polygonal approximation
method.

Corollary 1. Compared to approximating the curvec(t) with a polyline, the data volume
drops fromN to n = Θ(N2/3) when circular arc splines are used.

It should be observed that, the other way round, when approximatingc(t) with a point
sample (as commonly done for medial axis computations3), the data volume increases
to Θ(n3) compared ton circular arcs.

4. Convex Hull

Let A be some shape given in arc boundary representation. More specifically, ∂A is ap-
proximated by a simple (i.e., not self-crossing) and connected curveb composed ofn
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Fig. 2: Cases 2.1 (left) and 2.4 (right)

circular arcs. Clearly, ifb converges to∂A then the convex hull ofb converges to the con-
vex hull ofA. Moreover, the Hausdorff distance of the two convex hulls isbounded by the
Hausdorff distance ofb and∂A. We show that the convex hull algorithm for polylines in
Melkman37 can be generalized to simple circular arc curvesb while retaining itsO(n)

runtime.

In a nutshell, this algorithm processes each of the verticesof the given polyline in order
and maintains their convex hull. If the currently processedvertexvi falls into the convex
hull, CHi−1, constructed so far thenvi is deleted and we putCHi = CHi−1. Otherwise,
tangents are placed fromvi to CHi−1, and the sequence of vertices (if any) between the
corresponding two vertices of tangency is deleted fromCHi−1 in order to constructCHi.

The linear runtime of this strategy hinges on two propositions: (1) A constant-time
inclusion testvi ∈ CHi−1, and (2) deletion of vertices ofCHi−1 which are non-extreme
in CHi in time proportional to their number. While (2) is achieved by a standard Graham
scan24, proposition (1) is met by exploiting simplicity of the given polyline:vi ∈ CHi−1

is equivalent to the fact thatvi lies in the wedge spanned by the interior angle atv, where
v was the last vertex added toCHi−1.

Staying with vertices works correctly with polygonal curves because the convex hull
of two points equals the convex hull of their connecting linesegment. This is, of course,
not true for a connecting circular arc. As a consequence, theset of vertices of the convex
hull to be constructed is, in general, no subset of the input vertices. Also, the inclusion test
for a circular arc to be inserted is a more complicated operation, The following variant of
Melkman’s algorithm is able to cope with circular (and more general) arcs and still runs in
O(n) time. Its main subroutine computes the convex hull of only two arcs.

Let b1 . . . bn be the given simple circular arc curve. The second endpoint of each arcbi

(in this order) is called thetarget of bi. Some of the arcs may be line segments, and the
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curve may be cyclic. Assume first that the curve isC1. Let CH denote the convex hull
operator, and abbreviateCH(b1 . . . bi) asCHi. Consult Figure 2.

Algorithm HULL

ConstructCH2 = CH(b1b2). Letv be the last point along the chainb1b2 that lies onCH2.

For i = 3, . . . , n, process the arcbi as follows:

Search for the first arc,a, of CHi−1 clockwise fromv that contributes with non-zero
length toCH(a, bi) and such that this hull andCHi−1 are on the same side ofa. Similarly,
search for the first arc,c, counter-clockwise fromv with analogous properties. (a = c is
possible.) Arcsa andc already provide the information needed to constructCHi correctly.

Case 1 Arc a (and equivalently, arcc) does not exist. This meansCHi−1 ⊂ CH(bi).
PutCHi = CH(bi), and assign tov the target ofbi.

Case 2 Arcsa andc do exist. Check for some tangent,ta, which appears onCH(a, bi)

and is clockwise tangent toCHi−1, c.f. Figure 2 (right). Also, check for some tangent,tc,
which appears onCH(c, bi) and is counter-clockwise tangent toCHi−1.

Case 2.1 Tangentsta and tc both do not exist. This meansbi ∈ CHi−1. Put
CHi = CHi−1.

Case 2.2 ta exists (uniquely) buttc does not. Letta = xaya, wherexa is its point
of tangency onCHi−1. To obtainCHi, delete fromCHi−1 the clockwise part betweenv
andxa, and addta and the piece of the arcbi betweenya andv. Updatev as the last point
alongbi onCHi (eitherya or bi’s target).

Case 2.3 tc exists (uniquely) butta does not. Lettc = xcyc, with xc being its point of
tangency onCHi−1. To getCHi, delete fromCHi−1 the counter-clockwise part betweenv

andxc, and addtc and the piece of the arcbi betweenyc andv. Updatev as in Case 2.2
(eitheryc or bi’s target).

Case 2.4 ta andtc both do exist. Here we getCHi by deleting arcs fromCHi−1 as
in Cases 2.2 and 2.3, and then addingta, tc, and the piece ofbi betweenya andyc. We
updatev as the point amongya andyc that is closer to the target ofbi.

Correctness of algorithm HULL is verified by observing thatta and tc are indeed
tangents from the currently inserted arcbi to the convex hullCHi−1 constructed so far.
Thereby, as the algorithm stands now, it is of importance that the input curve isC1. This
guarantees that the boundary ofCHi−1 is C1 as well (except possibly at the target ofbi−1),
such that the arcsa andc are found correctly. Minor modifications in the selection criteria
for these arcs will make the algorithm work without this restriction.

The runtime is dominated by the search fora andc, where the necessary number of
calls of the two-arc hull subroutine is proportional to the total number of arcs constructed
or deleted. This number isO(n) because onlyO(1) arcs are constructed peri-loop. The
rest can be accomplished inO(1) time per arcbi if CHi is stored as a doubly linked list, or
in O(n) total time ifCHi is represented in a (more space-saving) dequeue.
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5. Triangulation

We next propose a triangulation algorithm for circular arc shapes. Define anarc triangleas
a (simply connected) face bounded by at most three circular arcs or line segments.

A partition of a circular arc shapeA into arc triangles need not always exist when
the use of Steiner points is disallowed. (Observe, however,that such a partition may exist,
although a partition ofA with straight line segments may not.) The situation does not
change if then arcs describing∂A arex-monotone pieces (and hence span semi-circles
at most), which we will assume below. In fact, there are examples where at least2n− 7

Steiner points are necessary. See Figure 3. For no pair of vertices of the depicted shapeA
does there exist a connecting circular arc insideA. Thus no part ofA can be split off using
a circular arc between two vertices. The interested reader may convince her/himself that
placingn − 4 Steiner points as shown is no waste. The asserted lower boundthen follows,
because each of the resulting faces needs additional Steiner points. Note that a single point
per face suffices only if circular arcs rather than line segments are used to split the face.

Fig. 3: Many Steiner points

The triangulation algorithm we are going to describe introduces at most2n − 5 Steiner
points (on the boundary ofA, rather than in its interior), runs inO(n log n) time, and uses
a dictionary as its most involved data structure. The produced primitives are arc triangles
where at least one edge is a line segment. Standard plane sweep is used to compute the
vertical visibilities insideA for each pair (vertex, arc) of∂A. Each such pair defines a
vertical line segment that splitsA and ends at a Steiner point on∂A. A decomposition
of A into arc triangles and arc trapezoids results. No priority queue is needed, as all events
guiding the plane sweep (namely, the vertices of∂A) are known in advance and thus can be
x-sorted beforehand. For simplicity, suppose that theirx-coordinates are pairwise different.

Lemma 2. The decomposition above contains exactlyn − 2 Steiner points.

Proof. Let us call a vertextypek if it vertically sees exactlyk arcs, i.e., definesk Steiner
points. We have vertices of types0, 1, and2. At each type-2 vertexv, the shapeA is
vertically split into three parts, each part having a type-0 vertex as anx-extremum. Two
such parts lie on the same side of the splitting segment, and among their extreme type-0

vertices, we mapv to the one which isx-closer tov. This mapping is injective, and does
not address the twox-extrema of∂A. The lemma follows.
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The obtained faces are exactlyn − 1 in number, at least two being arc triangles. Each
faceF that is an arc trapezoid can be easily split into arc triangles. If F is convex then a
line segment will do. Also, if at least one of the two arcs on∂F is avoided by the central
line g of their supporting circles, then a single splitting arc or line segment forF exists
(because there is a normal tog that touches that arc at an endpoint). Otherwise, we use
an intersection ofg with a reflex arc on∂F as a Steiner point and splitF with two arcs.
Figure 4 illustrates two typical cases. In total, at most2n− 5 Steiner points are used for an
arc triangulation.

We stress the fact that generalizing the classical plane sweep for polygon triangula-
tion 27 – though well possible inO(n log n) time – results in a more complicated algorithm
for arc triangulation. Large parts already swept across have to be remembered for later
processing, and the produced primitives are more complex than arc trapezoids. Also, line
segments being simultaneously tangent to two given circleshave to be calculated, whereas
in our algorithm the most complex operation is intersectinga circle with a straight line. As
an open question we pose finding an algorithm thatalwaysmanages with a (nearly) optimal
number of Steiner points, not only in the worst case.

g

g

Fig. 4: Splitting arc trapezoids

6. Medial Axis

Let A be the circular arc shape under consideration. (In the sequel, all objects are consid-
ered to be topologically closed sets.) Call a diskD ⊆ A maximalif there exists no diskD′

different fromD such thatD′ ⊃ D andD′ ⊆ A holds. The medial axis,M(A), of A is
defined as the set of all centers of maximal disks.

As the boundary ofA is a connected and simple curve withn circular arcs,M(A)
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consists of finitely many conic arcs, is connected, and cycle-free11 and thus forms a tree,
cf. 11. M(A) can be decomposed intoO(n) edges, which are maximal pieces of straight
lines and (possibly all four types of) conics. Endpoints of edges will be calledvertices
of M(A). Compared to polygonal shapes, the medial axis for circulararc shapes is not
more complicated, as both structures contain edges of degree2 in general.

The contribution of this section is a simple and practical randomized algorithm for com-
putingM(A). It works by divide-and-conquer and accepts as input any description of∂A
by circular arcs and/or line segments. The costly part is delegated to the divide step, which
basically consists of inclusion tests for arcs in circles. In particular, no conics take part in
these calculations. The merge step is trivial; it just concatenates two partial medial axes.
The expected runtime is bounded byO(n3/2), and will be proved to beO(n polylogn) for
several types of shape. A qualitative difference to existing medial axis algorithms is that a
combinatorialdescription ofM(A) is extracted first, which can then be directly (and ro-
bustly) converted into a geometric representation. We baseour algorithm on the following
simple though elegant decomposition lemma11.

Lemma 3. Consider any maximal diskD for A. LetA1, . . . , At be the connected compo-
nents ofA \ D, and denote withp the center ofD.

(1) M(A) =

t
⋃

i=1

M(Ai ∪ D)

(2) {p} =

t
⋂

i=1

M(Ai ∪ D)

In plain words, having at hands some maximal disk one can compute the medial axes
for the resulting components recursively, and then glue them together at a single point.
However, the desired efficiency of this strategy calls for a balanced decomposition. Its
existence is given below.

Lemma 4. There exists a maximal diskD for A such that at mostn2 arcs from∂A are
(completely) contained in each component ofA \ D.

Proof. Each pointp ∈ M(A) corresponds to a unique maximal diskDp for A. Let f(Dp)

be the number of arcs from∂A in the largest component induced byDp. As long as
f(Dp) > n

2 , the component that realizesf(Dp) is unique, and we can decreasef(Dp)

by continuously movingp onM(A) such thatDp enters into this component. This process
terminates at some pointp∗ wheref(Dp∗) ≤ n

2 . We never move back the way we came, as
the component we move out never exceeds a size ofn

2 .

We are left with the algorithmic problem of finding some maximal disk that yields a
well-balanced partition. Observe that the optimal pointp∗ above may be not unique, be-
cause the numberf(Dp) is invariant under motion ofp within the relative interior of any
fixed edgee ⊂ M(A). Let us defineWalk(e) as the path length inM(A) from e to p∗.
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*p

e

Fig. 5: Walk (dashed) and cut (dotted)

Further, defineCut(e) as the size of the smaller one among the two subtrees which consti-
tuteM(A) \ {e}. See Figure 5. Any tree with small ’cuts’ tends to have short ’walks’, in
the following respect.

Lemma 5. Let e be an edge ofM(A), chosen uniformly at random. ThenE[Walk(e)] =

Θ(E[Cut(e)]).

Proof. Orient all the paths inM(A) away from the pointp∗. This defines a partial order≺
on the edges ofM(A). That is, for any two edgese ande′ on the same path top∗, we write
e′ ≺ e if e′ is at closer distance top∗. We have the set equality

⋃

e∈M(A)

{(a, e) | a ≺ e} =
⋃

e∈M(A)

{(e, b) | b ≻ e}

because either set contains each pair of the relation exactly once. The (disjoint) subsets
united in the left set,L, represent all the paths inM(A) between its edgese andp∗. Thus
we haveE[Walk(e)] = 1

m · |L|, wherem is the number of edges ofM(A). Each subset
united in the right set,R, represents that one among the two subtrees inM(A) \ {e} which
avoidsp∗. So we get 1

m · |R| > E[Cut(e)], because forCut(e) we always consider the
smaller subtree. Moreover, if we neglect inR all the subtrees of sizes larger thanm

2 , then
the cardinality of the set drops by a constant factor (of at most4, if ≺ would be a total order,
hence less). This impliesE[Cut(e)] > 1

m · |R|
4 . The lemma now follows from|R| = |L|.

Lemma 5 motivates the following disk finding algorithm whichcombines random cut-
ting with local walking. Its main subroutine, MAX(b), selects for an arcb ⊂ ∂A its mid-
pointx and returns the unique maximal disk forA with x on its boundary. For the ease of
description, we assume that this disk splitsA into exactly two components. The algorithm
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can be easily adapted, otherwise, and its runtime even decreases. Letc ≥ 3 be a (small)
integer constant.

Procedure CUT(A)

PutA′ = A
Repeat

Choose a random arcb of ∂A′

ComputeD=MAX( b) and letA0 be the larger
component ofA induced byD

AssignA′ = A′ ∩ A0

Until A0 contains less thann − n
c arcs

ReportD

Procedure WALK(A)

Choose a random arcb of ∂A
ComputeD=MAX( b)
Let A0 be the larger component induced byD

While A0 contains more thann − n
c arcs do

Let b1 (b2) be the first (last) complete arc of∂A in A0

ComputeD1=MAX( b1) andD2=MAX( b2)
Assign toA0 the smaller one of the respective larger

components ofA for D1 andD2

Memorize the corresponding diskD ∈ {D1, D2}
ReportD

The disk finding algorithm now combines the CUT procedure andthe WALK procedure
as follows. The repeat loop of CUT and the while loop of WALK are executed by turns.
Whenever CUT is closer to the goal (i.e., yields a smaller largest component than does
WALK), we readjust the current disk for WALK to be that of CUT.Termination takes
place in either WALK or CUT.

To analyze the resulting runtime, let us first consider the assignment of arcs on∂A to
edges ofM(A), as done in subroutine MAX. Namely, if MAX(b)=D then arcb is mapped
to the edgee that contains the center ofD. Observe that either0, 1, or 2 arcs are mapped
to a fixed edge. Moreover, no two unaddressed edges and no two doubly addressed edges
are neighbored. This assignment is sufficiently uniform to convey randomness from arcs to
edges.

It remains to apply the result of Lemma 5, which asserts that no tree structure can
have both small cuts and long walks. Observe that this is, thus, true for the medial axes
of all the subshapes ofA considered by the algorithm. In the worst case of walk length
being balanced with cut number, a bound ofO(

√
n) on the expected number of total loop
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executions in CUT and WALK holds.a

The costly part in both procedures is their subroutine MAX, whose expected number of
calls obeys the same bound,O(

√
n). ComputingD=MAX (b) has a trivial implementation

which runs inO(n) time: We initialize the diskD as the (appropriately oriented) halfplane
that supportsb at its midpointx and, for all remaining arcsbi ⊂ ∂A that intersectD, we
shrinkD so as to touchbi while still being tangent tob atx. The most complex operation for
shrinkingD is computing the intersection of two circles. In particular, and unlike previous
medial axis algorithms, no conics take part in geometric operations.

In summary, the randomized complexity for computing the medial axis is given by
T (n) = T (1

cn)+ T ((1− 1
c )n) +O(n3/2) for c ≥ 3, which evaluates toT (n) = O(n3/2).

In many cases, however, will the algorithm perform substantially better. Letd be the graph
diameter ofM(A). Then the loop in WALK(A) is executed less thand times. So, for
example, ifd = Θ(log n) then an overall runtime ofO(n log2 n) is met. For the other
extreme case,d = Θ(n), our strategy is even faster. With constant probability, anedge on
the diameter is chosen, andΘ(n) such edgese haveCut(e) = Θ(n). The expected number
of loop executions in CUT(A) now is onlyO(1), and anO(n log n) algorithm results.
We conjecture that the latter situation is quite relevant inpractice. In many applications,
for typical shapes their medial axes will not branch extensively. Even if so, the branching
will be independent ofn, because each branch will be approximated by a large number of
circular arcs in order to achieve the predefined precision.

The output of the algorithm is a list ofO(n) points onM(A), namely, the centers of the
splitting disks, plus a list ofO(n) edges connecting them. Each edge is given implicitly by
its defining two arcs on∂A. To make sure that the reported point list includes all the vertices
of M(A), base cases that involve constantly many (pieces of) original arcs from∂A have
to be solved directly. (The constant is at most3 if ∂A is C1.) Note that the algorithm works
exclusively on∂A except for a final step, where the conic edges ofM(A) are explicitly
calculated and reassembled. This gives rise to increased numeric stability in comparison to
existing approaches.

Opposed to approximating∂A with the same accuracy by a polyline of sizeN , our cir-
cular arc algorithm takesO(n3/2) = O(N) time; see Corollary 1 in Section 3. Thus, even
for (probably rare) worst-case inputs, our simple algorithm competes asymptotically well
with previous methods. Other advantages over polygonal (and also point sample) approxi-
mations are described in the next section.

7. Convergence of Medial Axis

A well-known unpleasant phenomenon of the medial axis is itsinstability under pertur-
bations of the shape boundary. Several papers discussing this issue have been published

aThere is a subtlety to be noted in the (degenerate) case whereM(A) is a tree of non-constant maximal degree.
As we always cut and walk on edges instead of vertices ofM(A), termination might not be reached. This problem
can be dealt with easily with a modification described in1.
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Fig. 6: Small point sample (dashed Voronoi diagram) versus few arcs (solid medial
axis)

recently. A result in8 shows that stability is, in general, not given unless perturbations
areC2. In particular, medial axis convergence is not guaranteed for polygonal approxima-
tions. To deal with general shapes, the so-calledλ-medial axis has been introduced as a
tool in 7. After drawing a point sample from the shape boundary, the Voronoi diagram of
these points is constructed and pruned appropriately. Theλ-medial axis converges to the
original for vanishing sample distance. Drawbacks are the large sample size for a close
(and homotopy-equivalent) approximation, the lack of itsC1 behavior, and the need of
computing a general planar Voronoi diagram. Figure 6 gives an illustrative example.

We prove in this section that convergence of the medial axis under the Hausdorff dis-
tance comes as a byproduct of the careful (though, of course,still C1) biarc boundary
conversion described in Section 3.

Given some shapeA and a pointp on its medial axisM(A), denote withDp the unique
maximal disk with centerp. Recall thatM(A) is a geometric graph11, defined as the set of
centers of all maximal disks forA. Define aleaf of M(A) as a vertex with a single incident
edge. There are two ways how a vertex ofM(A) can be a leaf; it is either the center of the
osculating circle at an apex (a point of maximal curvature) of ∂A, or it is a ‘sharp’ vertex
of ∂A. The first type will be called aproper leaf. Our convergence proof is based on an
analysis of the behavior of the medial axis in the vicinity ofproper leaves, as well as at
points being sufficiently distant from proper leaves.

For a pointp ∈ M(A) defineξp ≤ π as the largest angle atp spanned by two points in
the setDp ∩ ∂A. Further, put

kp =
4

1 − cos
ξp

2

which is equivalent to cos
ξp

2 = 1 − 4

kp
. (1)

Whenp is not a proper leaf thenξp > 0. The lemma below, which addresses the parts of
the medial axis sufficiently remote from the proper leaves, does not assume any regularity
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condition for the shape boundaries. A convergence result ina similar spirit is presented
in 4.

Lemma 6. Let A and B be two shapes whose (two-sided) Hausdorff distance satis-
fies H(∂A, ∂B) = ε. Let Dp denote any maximal disk forA whose radiusrp fulfills
rp > kp · ε > 0. Then there exists a maximal diskDq for B such that‖p − q‖ < kp · ε.

Proof. Let x, y ∈ Dp ∩ ∂A be two points realizing the angleξp, that is,∠xpy = ξp. Let
D′

p be the largest disk centered atp and contained inB, and letz ∈ D′
p ∩ ∂B. DefineDq as

the maximal disk with respect toB and containingD′
p; then clearlyz ∈ ∂Dq. We consider

the set of all disksDx containingD′
p and satisfyingz ∈ ∂Dx. Within this set we defineDs

as the disk satisfying‖p − s‖ = kp · ε. See Figure 7 for an illustration.

Ds

Dq

Dp

D′

p

∂B

∂A

Bε(x)

M(A)

M(B)
x

s

p

q

z

y

α

ξp

Fig. 7: Notations from the proof of Lemma 6.

Without loss of generality we assume that the angleα = ∠xpz ≤ π satisfiesα ≥ ξp/2;
otherwise one may swapx andy. Due to this, and taking (1) into account, we get

kp · rp · cosα ≤ kp · rp · cos
ξp

2 = kp · rp · (1 − 4

kp
) = kp · rp − 4rp (2)

As we assumed thatrp > kp · ε, we obtain

kp · rp · cosα < kp · rp − 2rp − 2kp · ε + 2ε. (3)

This inequality implies

r2
p + (kp · ε)2 − 2 · rp · kp · ε · cos(π − α) < (rp − 2ε + kp · ε)2. (4)
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Due to‖p − x‖ = rp and‖s − p‖ = kp · ε, we thus have

‖p − x‖2 + ‖s − p‖2 − 2 · ‖p− x‖ · ‖s − p‖ · cos(π − α) < (rp − 2ε + kp · ε)2. (5)

Finally we apply the law of cosines to get

‖s − x‖ < rp − 2ε + kp · ε or, equivalently, ‖s − x‖ + ε < rp − ε + kp · ε. (6)

On the other hand, the radius‖s − z‖ of Ds is at leastrp − ε + kp · ε, by construction.
Consequently,Ds contains theε-neighborhood ofx, hence at least one point of∂B. This
impliesDq ⊂ Ds, hence

‖p − q‖ < ‖p − s‖ = kp · ε. (7)

This completes the proof.

Let p ∈ M(A) be a proper leaf, letx ∈ ∂A be the corresponding apex, and consider
some pointq lying on the unique edge incident top. Then the maximal diskDq touches∂A
at two points, which are the endpoints of a segment of∂A throughx of length, say,ℓ. When
ℓ → 0, then clearlyq → p. The following lemma describes the speed of this convergence.

Lemma 7. If ∂A is piecewise analytic andC2 in the neighborhood ofx then there exists
a constantw > 0 such that

‖q − p‖ ≤ w · ℓ2.

Proof. For a pointy ∈ ∂A, letny denote the normal line to∂A throughy. Given an apexx
of ∂A, define the set

Ix = {ny ∩ nz | y 6= z, d(y, x) ≤ ℓ, d(z, x) ≤ ℓ},

of intersection points of the curve normals, with distanced being measured along∂A.
Clearly,q ∈ Ix. Using the formal Taylor expansion of∂A at x it can be proved directly
thatδ(p, Ix) ≤ w · ℓ2 for suitablew > 0.

We are now prepared to prove the claimed convergence result.

Theorem 1. Let some shapeA with piecewise analytic boundary∂A be approximated by
a sequence of shapesBn, where∂Bn is a spline ofn circular arcs produced by the spiral
preserving variant of Algorithm BISECT. For the one-sided Hausdorff distanceδ we have

δ(M(Bn), M(A)) = O(n−1) and

δ(M(A), M(Bn)) = O(n−3/2).

Proof. We will give the full proof only for the case of globallyC2 boundary∂A which
does not contain circular arcs. The proof generalizes easily to the case where∂A is an ar-
bitrary concatenation of analytic pieces, and thus, in particular, may contain sharp vertices.

As ∂A is assumed to be globallyC2, all leaves ofM(A) are proper leaves. For suffi-
ciently largen, each leaf ofM(A) is also a leaf ofM(Bn), and all leaves ofM(Bn) are
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contained inM(A). This is because the circular arc spline∂Bn preserves not only spirals,
but also position, normal vector, and curvature at each apexx of ∂A.

Let us remove from∂Bn the containing circular arcbx for each apexx whose oscu-
lating disk is contained inBn (and hence is maximal forBn). This decomposes∂Bn into
components. We definedn as the minimum of the lengths of all the removed arcsbx. This
minimum length shrinks to zero, as∂A does not contain circular arcs, and it behaves as
Ω(n−1) by construction ofBn. Now define

ξn = 2 arcsin(dn/2L), (8)

whereL denotes an upper bound on the geometric diameters of all the shapesBn. Apart
from disks for leaves, each maximal diskDp for Bn has contact to at least two differ-
ent components. (Otherwise, there would be a supplementaryleaf of M(Bn).) For such a
diskDp, we have the angle inequalityξp ≥ ξn, provided thatn is sufficiently large (due to
the fact thatn → ∞ impliesdn → 0).

Becausedn = Ω(n−1) and sinceL is a constant, we have1 − cos(ξn/2) = Ω(n−2).
Moreover,δ(∂A, ∂Bn) = O(n−3) by construction. That is, the condition in Lemma 6
holds for all maximal disksDp for Bn (with exception of finitely many proper leavesp),
whenn is sufficiently large. Indeed, in Lemma 6 we havekp · ε = O(n−1). By the same
lemma, this is also a bound on‖p− q‖ and therefore we getδ(M(Bn), M(A)) = O(n−1).

The other direction can be proved similarly. For each leafp of M(A), with correspond-
ing apexx of ∂A, we define a neighborhoodcx on∂A of lengthn−3/4. Removal of all the
segmentscx leads us to two types of maximal disksDq for A, depending on whetherDq

touches a single segmentcx (q is then close top), or not. For the latter type, the analysis is
the same as above, and shows thatq approaches the center of some maximal disk forBn at
speedO(n−3/2). For the former type, due to Lemma 7, the distance betweenq and leafp
(which is also a leaf ofM(Bn)) behaves asO((n−3/4)2), i.e., the same. The one-sided
Hausdorff distanceδ(M(A), M(Bn)) thus converges at that speed.

Note that the global convergence speed of the medial axis with respect to the Hausdorff
distance isO(n−1), whereas the error of the boundary approximation improves asO(n−3).
This is due to the behavior of the medial axis close to its leaves. When we restrict ourselves
to theλ-medial axis7 for anyλ > 0, thendn in formula (8) becomes a constant, and the
approximation speed isΘ(n−3) by Lemma 6. This compares favorably to using a size-m

point sample on∂A and pruning its Voronoi diagram, as the approximation speedis then
only Θ(m−1).

8. Conclusions

We have given several examples for the efficient handling of shapes with nonlinear bound-
aries. In particular, the use of circular arcs for boundary conversion has been shown to
be highly useful. Our results profit from the confluence of geometric approximation the-
ory and computational geometry. To our knowledge, this is the first systematic approach
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Fig. 8: Exact medial axis of circular arc boundary representation (IJC) ver-
sus polygonal boundary representation (GA).

in this direction. Compared to conversion into polylines, the gain in efficiency increases
with the complexity of the subsequent algorithm. This makesaffordable suboptimal (hence
sometimes less complicated) algorithms.

Based on the theoretical investigations in the present paper we have developed an effi-
cient and reliable implementation of the 2D medial axis construction; see1 for details and
empirical evaluations. An example of the obtained results is given in Figure 8. It shows the
exact medial axis of a circular arc approximation as opposedto the exact medial axis of a
piecewise-linear approximation.

Other approximating primitives could be considered (e.g.,cubics). In our opinion
though, circular arc splines yield the best trade-off. The presented algorithms, in princi-
ple, work for arbitrary primitives. In particular, in our medial axis algorithm, the added
numerical complexity is not raised further by the algorithmitself. This is a nontrivial prop-
erty of this algorithm, which is the first to combine practicality, efficiency, and stability1.
Its generalization to shapes with holes is possible, as Lemma 3 has a counterpart for this
case.

Finally, we raise the question of whether results of this paper can be extended to three-
space.
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23. M.R. Garey, D.S. Johnson, F.P. Preparata, R.E. Tarjan. Triangulating a simple polygon.Infor-
mation Processing Letters7 (1978), 175–179.

24. R.L. Graham. An efficient algorithm for determining the convex hull of a finite planar set.Infor-
mation Processing Letters1 (1972), 132–133.

25. R.L. Graham, F.F. Yao. Finding the convex hull of a simplepolygon.J. Algorithms4 (1984),
324–331.

26. M. Held, J. Eibl. Biarc approximation of polygons with asymmetric tolerance bands.Computer-
Aided Design37 (2005), 357–371.

27. S. Hertel, K. Mehlhorn. Fast triangulation of the plane with respect to simple polygons.Infor-
mation & Control64 (1985), 52–76.
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Appendix

Let c(t) be a given analytic curve on the domain[t0, t1] and suppose thatc(t) contains
neither inflections nor apices in[t0, t1]. For given step sizeh, consider geometric primitives
b(t, h) that approximate the curve segmentsc[t, t + h]. The geometric primitives are either
line segments or arcs or biarcs. Assume that the domain ofc(t) can slightly be enlarged to
[t0, t1 + hmax], wherehmax is a suitable constant which specifies the largest stepsize.

In order to evaluate the one-sided Hausdorff distance fromb(t, h) to c[t, t + h], we
analyze the stationary pointsτ = τi of the function

d(τ, t, h) = min
q∈b(t,h)

‖q − c(τ)‖, τ ∈ [t, t + h],

which are characterized by

∂

∂τ
d(τ, t, h)

∣

∣

∣

∣

τ=τi

= 0, i = 1, . . . , s(t) .

Provided thath is sufficiently small, the numbers(t) of stationary points is independent
of t. For instance, this number is1 for line segments and2 for arcs interpolating three
points. For each stationary pointτi we consider the associated distance

di(t, h) = d(τi(t, h), t, h)

where we definedi(t, 0) = 0. The one-sided Hausdorff distanceδ(b(t, h), c[t, t + h])

is the maximum of all these distances.
For each value oft, consider the Taylor expansion att = 0. The first non-vanishing

derivative is used to define the remainder term,

di(t, h) =
1

k!
d
[k]
i (t, h∗

i (h)) · hk,

where[k] indicates thekth derivative with respect to the step sizeh andh∗
i (h) ∈ [0, h].

The orderk of this term is called theapproximation orderof the geometric primitive; it
equals2 for line segments and3 for circular arcs.

Since the curvec(t) contains neither inflections nor apices, and due to the compactness
of its domain[t0, t1], there exist positive constantsC, D such that the functionsdi satisfy

0 < C < d
[k]
i (t, 0) < D.

Moreover, since thekth derivative is continuous, there exists a step sizeg > 0 such that

∀(t, h∗) ∈ [t0, t1] × [0, g] :
C

2
≤ d

[k]
i (t, h∗) ≤ 2D.

Consequently, ifh is sufficiently small, then the one-sided Hausdorff distanceδ satisfies

1

k!

C

2
hk ≤ δ ≤ 1

k!
2Dhk .

This provesδ = Θ(hk) for the case wherek is a constant.


