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Boundary approximation of planar shapes by circular arssuantitative and qualitative advantages
compared to using straight-line segments. We demonstaeoy way of three basic and frequent
computations on shapes — convex hull, decomposition, ardiainexis. In particular, we propose a
novel medial axis algorithm that beats existing methodsmpkcity and practicality, and at the same
time guarantees convergence to the medial axis of the afighape.
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1. Introduction

The plain majority of algorithms in computational geomdtave been designed for pro-
cessingdinear objects, like lines, planes, or polygons. On the one haiigligltertainly due
to the fact that many interesting and deep computationalkcantbinatorial questions do
arise already for inputs of this simple form. Again, the pradic reason is that algorithms
for linear objects are usually both easier to develop anglginto implement. To make
things work for nonlinear objects, which arise frequentlypractical settings, such objects
are usually approximated in a piecewise-linear manner artd & tolerable error. Existing
approache$® to directly extending polygonal algorithms to curved olgeare rare and,
due to their generality, of limited practical use.
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In its simplest form, the input object is a single planar ghaf with curved and con-
nected boundar§ A. Frequent tasks to be performed.dr- each being prior to a variety of
more involved computations — include constructing the eartwill of 4, decomposingd
into primitives, and calculating the medial axis.df These tasks are well investigated in
the case of polygonal shapes. In certain situations, hawthesnumber of line segments
required for approximating.4 with high accuracy may be prohibitively large. Even more
seriously, making a piecewise-linear approximationdfand invoking a polygonal-shape
algorithm may generate results that are not homeomorpliiestoorrect result; the medial
axis is a well-known example.

The intention of the present paper is to highlight the userefitar arcs for boundary
representation. It is well known that for nonlinear curvgreents the approximation order
increases in comparison to using straight-line segmentsinstance, it has been conjec-
tured by Hollig and Koct®, and proved forl = 2, that polynomial curves of degrekin
the plane have approximation ordet. Many related results exist in the rich literature on
geometric interpolation, including results on circulazs.

In particular, if a given accuraeyis achieved by usingy line segments, then as few as
n = ©(N?/3) circular arcs can accomplish the same. This has been aniisapproxima-
tion theory, but in computational geometry this gain seerisave been less valued than
eliminating small factors in the complexity of the subsetflyeapplied algorithm. Bound-
ary approximation by circular arcs may be of advantage alsoqualitative respect. For
instance, it avoids the mentioned structural inconsisésnin medial axis computations,
and it supports the computation of shape offsets, as the ofahapes bounded by circular
arcs is closed under offset operations.

We will show that for the three basic problems mentioned abewonvex hull, de-
composition, and medial axis — simple and practical, thatijrefficient, algorithms exist
that work for circular arc inputs. The first two problems ass demanding; we treat them
mainly to point out the respective favorable (in our opiniapproach, whose practicality
shall encourage the use of circular arc boundary reprets@amtéevertheless, substantial
differences to the polygonal case occur; see below. For atingpthe medial axis, we
propose a novel and extremely simple algorithm that is baseadknown (though less rec-
ognized) decomposition lemma. After having computed algpwambinatorial description
of the medial axis using tailored shape splitting, its indidal parts (conics and line seg-
ments, like in the polygonal case) are re-assembled iratrivierge steps. The algorithm
and its analysis are not specific to circular arc inputs.

Suitable circular arc approximations of shapes can be foulgear time. In summary,
the obtained shape processing algorithms are superioniimre to their line segment based
counterparts, retain much (if not all) of their simplicignd are even more natural in some
cases.

2. Outline and Background

We briefly describe the contributions of this paper and edlaém to existing literature.
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Section 3 deals with approximating general curves by slétpbimitives. This is a
topic of importance in geometric modeling and in CAD and NQ@laations, and many
quite recent results are availabfg?6-3%-36.38.41.43 “Qur aim is to approximate a paramet-
ric curvec(t) by circular arcs. We assume that) is piecewise-polynomial of constant
degree, and we use biarcs (pairs of smoothly joined circares)3:404! as primitives.
A straight-forward bisection algorithm for biarc geneoatialready fits our purposes. It
uniquely assigns biarcs to parameter intervals, whicHiffatgs the error evaluation. An
approximating spline curvieof sizen is computed irO(n) time. It fits the input curve(t)
in slope at biarc endpoints, and can be tuned to mafthin curvature at certain points
(afact being important in subsequent medial axis comprta}i Though not being optimal
in the number of arcs, the approximation ordebds still three3>-4!. In contrast, with line
segments one cannot exceed order two, and a polyline of\size© (n3/?) is needed to
arrive at the same precision.

The remaining sections propose algorithmgdiccular arc shapes4, where the bound-
ary A of Ais given as a connected curve composed offcular arcs. Choice is guided by
efficiency as well as by reducibility to basic operationg treve robust implementatiof.

Section 4 outlines an algorithm for computing the convex dfuld. This task is one of
the most basic to be performed for a given shape, and hassyafapplications including
shape fitting, motion planning, shape separation, and midmgys At least four linear-time
algorithms have been developed for polygonal sh&gés?:3". The incremental method
by Melkmar?®” stands out by its simplicity, and it is this candidate we galiee for circular
arc shapes. Compared to the original setting, two diffieslirise. Deciding inclusion for
a currently inserted arc in the convex hull constructed sasfano trivial test, and the
convex hull cannot be described by a sequence of input esrt€ the shape. We show
that a runtime of(n) is still possible. The basic subroutine of the algorithm poites the
convex hull of only two circular arcs.

Section 5 deals with shape triangulation, a fundamentadlimgj block in algorithms
for decomposition, shortest path finding, and visibilityo-name a few. Most existing al-
gorithms are meant for polygonal shapes. They partition@gfsimple)V-vertex polygon
into triangles without introducing Steiner points. Efficieandidates are®2327-32 which
all show anO(N log N) runtime. Theoretically more efficient methods do exist,whéen
aiming at simplicity, choice should be made from the list\aho

When trying to generalize to shapd$ounded by circular arcs, we face two problems.
First of all, if the use of Steiner points is disallowed, tteepartition of A into primitives
bounded by a constant number of circular arcs need not ¢kistertain cases, however,
such a partition of4 will exist, but a partition with straight line segments wilbt.) Also,
not all triangulation methods are suited to generalizatidns applies, for instance, to
the extremely simple ear cutting method*hwhich runs in timeO(r - N), wherer is
the number of reflex vertices od. The triangulation algorithm we propose is closest to
Chazelle’s’. It manages with an (almost) worst-case minimal number et points
ondA, runs inO(nlogn) time, and uses a dictionary as its only nontrivial data stmgc
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The produced primitives are arc triangles with at least araéght edge. The most complex
geometric operation is intersecting a circle with a line.

Section 6 is devoted to the medial axis, a frequently usegttsire associated with a
given input shape. Its main applications include shapegmeition, solid modeling, pocket
machining, and others. Interest in mathematical propeuiethe medial axis and the
Voronoi diagram for general shapes found renewal in receatsp:7-8:11:19:20:39 "|n our
case, where the shapkis simply connected and A consists of: circular arcs, its medial
axis M (.A) is known to be a tree composed ©{n) conic edges. Algorithmic work on
the (exact) medial axis either concentrated on the caseewhds a polygon®-19:31, or
on general sets of curved are$?29:39 (and their Voronoi diagram) without, however, ex-
ploiting the fact that the input arcs define a simple curveauigh theoretically efficient as
O(nlogn) or better, these algorithms suffer from involved merge eeition steps which,
even for straight arcs as input, are difficult to implementaédition, numerical stability
issues arise heavily; intersections of conics have to terehited repeatedly which, when
not calculated exactly, are bound to accumulate the efritrelvertices of the medial axis
are assumed to be known, the in-between edges can be tracedticaily 1217, This ap-
proach, however, requires an expensive a-priori analy#iealobal connectivity structure
of the medial axis.

We present a simple randomized divide-and-conquer algorfor computingM (.A)
that overcomes these drawbacks. In contrast to comparkgudgtams, the costly part is
delegated to the divide step. The geometrically most coxpeerations in this step are
computing the intersection of two circles. The merge stepivé&l: it concatenates two
medial axes. The expected runtime is bounde®by?/2) = O(N), but is provably better
for most types of shape. For examplg(n log n) expected time suffices if the diameter
of M(A) is ©(n). No nontrivial data structures are used.

To guarantee applicability of our methods to approximatimg medial axes of gen-
eral shapesd, a convergence result is needed. We prove in Section 7 thvag, $uitable
approximation oD .A by circular arcsM (A) is the limit of M (B) when the approximat-
ing arc shapé converges tod. Related results exist, but either presuppo8eonditions
on 9B not attainable by circular arcs or concern only subsets of the medial akithat
survive after pruning the Voronoi diagram of point samplesrfd.A. It is well known?
that medial axis convergencerist given for polygonal approximations of. While cer-
tain conditions on the approximation with circular arcsgudee convergence, there is no
way to guarantee convergence for point samples or line setgméthout pruning. If we
do restrict ourselves to the pruned part in the case of a painple (the\-medial axis’),

a data volume 00 (n?) = ©(N?) arises, compared to circular arcs oV line segments,
for the same approximation quality. In conclusion, circudecs are the simplest possible
tool for boundary conversion that guarantees a stable maxdgmapproximation.

We mention that there exist several point-based methodppooaimate the medial
axis in 3D. Using a proper subset of the Voronoi facets, che$e the edges of the dual
Delaunay triangulation, a convergence guarantee whemgalis-sampling can be shown,
see'®!4, However, these approaches are not needed for 2D, as thedigliagram vertices
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of a sample already converge to the medial axis in this case.

3. Approximation by Circular Arcs

In order to represent a general shapé a form suitable for geometric computations, we
discuss methods for approximatifgl by circular arcs. We assume thatl is given as a
polynomial spline curve. While particular attention is¢gbt the cubic case, being the most
popular one in applicatior’s, the methods can be applied to spline curves of any degree.

Several approaches to generating circular arc splines; eseie e.g3° for a review.
We consider a simple bisection algorithm consisting of tveps, approximation and error
measurement. A geometric primitive(an arc or a biarc) is fitted to a segmenof the
given curvec(t), and the distance fromto s is numerically computed. The algorithm is
relatively easy to implement and still adapts the degreéieetiom to the input data. As a
slight disadvantage, the number of primitives (the resgltata volume) is optimal only in
the asymptotic sense.

Define the one-sided Hausdorff distance from a primitive a segment C ¢(t) as

5(b.s) = i —qll-
(b, 5) = max min [|p — ]|

(We considem and s as closed sets.) Let denote the error tolerance to be met by the
algorithm.

Algorithm BISECT (to, 1)

Construct

Computed = §(b, c[to, t1])

If § < ethenreturn{b}

Else return BISECT, 1) U BISECT(22f% 1)

Depending on the primitivé used, Algorithm BISECT produces splines of different
quality: merely continuous{®) circular arc splines, or tangent continuoGs arc splines.
When being content with the former type, we simply can chdosé the unique circular
arc passing through the three pointg, ), c(@), andc(t;). To obtainC'! arc splines,
so-called biarc4 are utilized.

A biarc b consists of two circular arcs with common unit tangent veatdaheir joint.
Usually, b is described by its source with associated unit tangent vectgy, and its tar-
gety with unit tangent vectop,. Given these data, there exists a one-parameter family
of interpolating biarcs. All possible joints are located the circlec passing through:
andy and having the same oriented angles wifrendv,. Several ways for choosing the
jointm have been proposed; see €%t!. For many applications, taking = o N c[to, 1]
is appropriate. To calculate in the cubic case, a polynomial of degrehas to be solved
(where a closed-form solution is still available). The autis aC* arc spline with all arc
endpoints sitting om(t).
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n =12, z =100

Fig. 1: z-magnified error fom biarcs

In view of subsequent stable medial axis computations,itb&ce ofm has to be made
more carefully. Define ampexof ¢(t) as a local curvature maximum. The apices split the
curvec(t) into pieces of monotonic signed curvature, so-catipilals Following 3%, we
aim at approximating spirals @ft) by circular arc spirals. To this end, we splitt) at its
apices. In the cubic case, these points can be found by sopgtynomials of degreé.
Now, we exploit that spiral biarcs can be constructed thaheat two given points andy,
match unit tangents there, and assume a predefined curirature of them. Lek, andk,
be the curvature of(t) atx andy, respectively, and suppose < k,. To match curvature
atz, we choose the radius of the first ab¢, equal tor, = 1/k,.. The jointm is obtained by
intersecting the circle supportirtg with the joint circles. According to3%, the radii and
curvatures satisfy, > r, > 1/k,. When starting the next biarc fromwith r, = 1/k,
(unlessy is an apex), monotonicity of signed curvature will be presdr

Each arcis found i®(1) time, where the constant depends on the degree of the polyno-
mial to be solved. Fig. 1 shows an example of a biarc conver3ioe scaled curve normals
visualize the magnified error distribution.

Concerning the error measurement, each produced ciragléay bas to be matched to
its corresponding segmeat= clt(, t}]. This is, of course, trivial when the biarc joint
has been chosen to lie ef¥). In the case of biarc spirals, we interse(t) with the normal
of b; atm. In the case of degree 3 input curves, this leads to a cubiatiegqu If multiple
solutions within the total biarc intervilly, 1] exist, then the error is set te. Otherwise,
we compute the one-sided Hausdorff distad(fg, s) by substituting the parametric rep-
resentation ofs into the implicit equationk (with leading coefficientd) of the circle
supportingp;. If r is the radius of’, andd and D are the minimum and maximum values
of (K oc)(t) fort € [ty, t}], we get

0(bsys) <max{|Vr2—d—rl,|vVr2+D—r|}

and this bound is sharp. Consequently, in the cubic ¢dsg,s) can be evaluated by solv-
ing a quintic polynomial equation on the intervg, ¢;]. Alternatively, a simpler upper
bound can be calculated (without polynomial solving) bylaemgd and D with the min-
imum and maximum coefficient of the Bernstein-Bézier repregation’? of K o ¢ with
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respect tdtg, t1]. As the length ofs decreases, this bound converges {ty, s). As an-
other simple but important observation, the-sidedHausdorff distance betweénands,
max{d(b;, ), (s, b;)}, vanishes withd (b;, s) becausé, ands are of constant degree. Thus
controlling the latter distance already ensures thaind s arec-close with respect to the
former one.

In summary, when algorithm BISECT spans a binary recursiem withn leaves (the
returnedr primitives), any of the described types of arc splines cacdmstructed irO(n)
time.

Let us discuss the asymptotic behaviour of the numkfer decreasing toleranee For
a given curve:(t) with domain|ty, ¢1], which is assumed to contain neither inflections nor
apices, we consider primitives having approximation otdédapting the analysis i#P4!
(as done in the Appendix), we gé&t= ©(h*) for the one-sided Hausdorff distanéepro-
vided thatc(t) is approximated with (small) parameter step dizand that is considered
a constant.

This relation implies a general lower bound. loryapproximation ot:(¢) obtained by
BISECT(%o, t1) usingn primitives with approximation ordér, the largest step size satisfies
At > % Moreover, we havé < ¢ by the terminating condition of the approximation
algorithm. Froms = O((At)¥), we getn = Q(1/£!/%). On the other hand, the minimum
step sizeA’t taken by any algorithm for an intervélsatisfiesA’t < % Assume we
stop BISECTty, t;) with doubled step sizA’t. Then there exists at least one interval,
for example the one containing for whichd > e. As we havel = O((2A't)*) it follows
thatn = O(1/¢'/*). We obtain:

Lemma 1. For sufficiently small tolerance, the numbem of primitives constructed by
algorithm BISECT is asymptotically optimal.

Lemma 1 also holds in the general case whefte contains inflections and apices,
because the resulting number of spiralg @ is independent oi. In conclusion, to arrive
at tolerances, Algorithm BISECT needs. = ©(1/+/¢) circular arcs (ordeB), whereas
N = ©(1/+/¢) line segments (orde) have to be invested by any polygonal approximation
method.

Corollary 1. Compared to approximating the cureét) with a polyline, the data volume
drops fromN ton = ©(N?/3) when circular arc splines are used.

It should be observed that, the other way round, when appratigc(t) with a point
sample (as commonly done for medial axis computatijnshe data volume increases
to ©(n?) compared to: circular arcs.

4, Convex Hull

Let A be some shape given in arc boundary representation. Moo#isp#y, 0.A is ap-
proximated by a simple (i.e., not self-crossing) and cotetecurveb composed of
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Fig. 2: Cases 2.1 (left) and 2.4 (right)

circular arcs. Clearly, ib converges t@.4 then the convex hull ob converges to the con-
vex hull of A. Moreover, the Hausdorff distance of the two convex hullsaanded by the
Hausdorff distance ob ando.A. We show that the convex hull algorithm for polylines in
Melkman?®7 can be generalized to simple circular arc curbeshile retaining itsO(n)
runtime.

In a nutshell, this algorithm processes each of the vertittee given polyline in order
and maintains their convex hull. If the currently procesgedexv; falls into the convex
hull, CH;_1, constructed so far then is deleted and we put H; = C H;_;. Otherwise,
tangents are placed from to C'H;_,, and the sequence of vertices (if any) between the
corresponding two vertices of tangency is deleted ftof;_, in order to construaf’ H.

The linear runtime of this strategy hinges on two proposgia1l) A constant-time
inclusion testv; € CH;_1, and (2) deletion of vertices & H;_; which are non-extreme
in C'H; in time proportional to their number. While (2) is achievadébstandard Graham
scan®?, proposition (1) is met by exploiting simplicity of the givgolyline:v; € CH;_,
is equivalent to the fact thaf lies in the wedge spanned by the interior angle,avhere
v was the last vertex added €6H; _ ;.

Staying with vertices works correctly with polygonal cusveecause the convex hull
of two points equals the convex hull of their connecting lsagment. This is, of course,
not true for a connecting circular arc. As a consequenceséhef vertices of the convex
hull to be constructed is, in general, no subset of the inpttices. Also, the inclusion test
for a circular arc to be inserted is a more complicated opmral he following variant of
Melkman'’s algorithm is able to cope with circular (and moeagral) arcs and still runs in
O(n) time. Its main subroutine computes the convex hull of only &xcs.

Letd; ... b, be the given simple circular arc curve. The second endpbiach ard;
(in this order) is called théarget of b;,. Some of the arcs may be line segments, and the
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curve may be cyclic. Assume first that the curveCis. Let CH denote the convex hull
operator, and abbreviafeéH (b . .. b;) asC H;. Consult Figure 2.

Algorithm HULL
ConstructC Hy, = CH (b1b2). Letv be the last point along the chdipnb, that lies onC' Hs.
Fori =3,...,n, process the ark; as follows:

Search for the first ar@, of CH;_; clockwise fromwv that contributes with non-zero
length toC H (a, b;) and such that this hull andH;_; are on the same side of Similarly,
search for the first are;, counter-clockwise fromy with analogous propertiesa (= ¢ is
possible.) Arcs andc already provide the information needed to consttugt; correctly.

Case 1 Arc a (and equivalently, are) does not exist. This mea$H;_; C CH (b;).
PutCH; = CH(b;), and assign te the target ob,.

Case 2 Arcsa andc do exist. Check for some tangent, which appears 06’ H (a, b;)
and is clockwise tangent t0H,_, c.f. Figure 2 (right). Also, check for some tangemnt,
which appears o' H (¢, b;) and is counter-clockwise tangent@ad; .

Case 2.1 Tangentst, and t. both do not exist. This means, € CH;_;. Put
CHl == CHifl.

Case 2.2 t, exists (uniquely) but. does not. Let, = z,y,, Wherezx, is its point
of tangency ornC' H;_;. To obtainC H;, delete fromC H;_; the clockwise part between
andzx,, and add, and the piece of the atg betweery, andv. Updatev as the last point
alongb; on C H; (eithery, or b;'s target).

Case 2.3 t. exists (uniquely) but, does not. Let, = x.y., with x. being its point of
tangency olC H; . To getC H;, delete fronC' H;_; the counter-clockwise part between
andz., and add. and the piece of the aig betweeny. andv. Updatev as in Case 2.2
(eithery, or b;'s target).

Case 2.4 t, andt. both do exist. Here we ge&t H; by deleting arcs fronC' H; ;1 as
in Cases 2.2 and 2.3, and then addipgt., and the piece ob; betweeny, andy.. We
updatev as the point among, andy. that is closer to the target éf.

Correctness of algorithm HULL is verified by observing thatand¢. are indeed
tangents from the currently inserted a@rcto the convex hullC’' H;_; constructed so far.
Thereby, as the algorithm stands now, it is of importancettrainput curve isC!. This
guarantees that the boundary@#;_, is C' as well (except possibly at the targebef ,),
such that the arcs andc are found correctly. Minor modifications in the selectioiteria
for these arcs will make the algorithm work without this riesion.

The runtime is dominated by the search foandc, where the necessary number of
calls of the two-arc hull subroutine is proportional to tb&at number of arcs constructed
or deleted. This number ©(n) because only)(1) arcs are constructed petoop. The
rest can be accomplished@ (1) time per ard; if C H; is stored as a doubly linked list, or
in O(n) total time if C H; is represented in a (more space-saving) dequeue.
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5. Triangulation

We next propose a triangulation algorithm for circular drapges. Define aarc triangleas
a (simply connected) face bounded by at most three circutarar line segments.

A partition of a circular arc shapgd into arc triangles need not always exist when
the use of Steiner points is disallowed. (Observe, howgvat,such a partition may exist,
although a partition of4 with straight line segments may not.) The situation does not
change if then arcs describin@ A are z-monotone pieces (and hence span semi-circles
at most), which we will assume below. In fact, there are elemphere at leastn — 7
Steiner points are necessary. See Figure 3. For no pair ifegof the depicted shapé
does there exist a connecting circular arc insid& hus no part ofA can be split off using
a circular arc between two vertices. The interested readgr convince her/himself that
placingn — 4 Steiner points as shown is no waste. The asserted lower libandollows,
because each of the resulting faces needs additional Speimgs. Note that a single point
per face suffices only if circular arcs rather than line segare used to split the face.

Fig. 3: Many Steiner points

The triangulation algorithm we are going to describe introeks at mostn — 5 Steiner
points (on the boundary o4, rather than in its interior), runs i@ (n log n) time, and uses
a dictionary as its most involved data structure. The predusrimitives are arc triangles
where at least one edge is a line segment. Standard plang $svesed to compute the
vertical visibilities insideA for each pair (vertex, arc) a?A. Each such pair defines a
vertical line segment that splitd and ends at a Steiner point @A. A decomposition
of A into arc triangles and arc trapezoids results. No prionitgue is needed, as all events
guiding the plane sweep (namely, the vertice8.4j are known in advance and thus can be
x-sorted beforehand. For simplicity, suppose that theioordinates are pairwise different.

Lemma 2. The decomposition above contains exaatly 2 Steiner points.

Proof. Let us call a vertexypek if it vertically sees exactly arcs, i.e., defineg Steiner
points. We have vertices of typd&s1, and2. At each type2 vertexwv, the shapea is
vertically split into three parts, each part having a typeertex as anc-extremum. Two
such parts lie on the same side of the splitting segment, arwhg their extreme typ@é-
vertices, we ma to the one which is:-closer tov. This mapping is injective, and does
not address the twe-extrema o) A. The lemma follows. |
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The obtained faces are exactly- 1 in number, at least two being arc triangles. Each
face F' that is an arc trapezoid can be easily split into arc triamdfel” is convex then a
line segment will do. Also, if at least one of the two arcsd¥i is avoided by the central
line g of their supporting circles, then a single splitting arc ioelsegment foF' exists
(because there is a normal gathat touches that arc at an endpoint). Otherwise, we use
an intersection off with a reflex arc oroF' as a Steiner point and spiit with two arcs.
Figure 4 illustrates two typical cases. In total, at niost- 5 Steiner points are used for an
arc triangulation.

We stress the fact that generalizing the classical planegvi@ polygon triangula-
tion 27 — though well possible i (n log n) time — results in a more complicated algorithm
for arc triangulation. Large parts already swept acros liavbe remembered for later
processing, and the produced primitives are more comphax &nc trapezoids. Also, line
segments being simultaneously tangent to two given cit@es to be calculated, whereas
in our algorithm the most complex operation is intersectirgyycle with a straight line. As
an open gquestion we pose finding an algorithm #hatlysmanages with a (nearly) optimal
number of Steiner points, not only in the worst case.

Fig. 4: Splitting arc trapezoids

6. Medial Axis

Let A be the circular arc shape under consideration. (In the $emjliebjects are consid-
ered to be topologically closed sets.) Call a diskC .4 maximalif there exists no dislD’
different from D such thatD’ > D and D’ C A holds. The medial axisi/(A), of A is
defined as the set of all centers of maximal disks.

As the boundary of4 is a connected and simple curve withcircular arcs,M(.A)
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consists of finitely many conic arcs, is connected, and efrele!! and thus forms a tree,
cf. 11. M(A) can be decomposed int®(n) edgeswhich are maximal pieces of straight
lines and (possibly all four types of) conics. Endpoints dfes will be calledvertices
of M(A). Compared to polygonal shapes, the medial axis for circalarshapes is not
more complicated, as both structures contain edges of e@gnegeneral.

The contribution of this section is a simple and practicati@mized algorithm for com-
puting M (A). It works by divide-and-conquer and accepts as input angrg®n of 9.4
by circular arcs and/or line segments. The costly part isgied to the divide step, which
basically consists of inclusion tests for arcs in circlesparticular, no conics take part in
these calculations. The merge step is trivial; it just coecates two partial medial axes.
The expected runtime is bounded®yn3/2), and will be proved to b&(n polylogn) for
several types of shape. A qualitative difference to existiredial axis algorithms is that a
combinatorialdescription ofM (A) is extracted first, which can then be directly (and ro-
bustly) converted into a geometric representation. We basalgorithm on the following
simple though elegant decomposition lemtha

Lemma 3. Consider any maximal disk for A. Let A4, ..., A; be the connected compo-
nents ofd \ D, and denote witlp the center ofD.

(1) M(A) = O M(A; UD)

i=1

t
(2 {p}=(M(4UD)
i=1
In plain words, having at hands some maximal disk one can oterthe medial axes
for the resulting components recursively, and then gluenth@gether at a single point.
However, the desired efficiency of this strategy calls foradéabced decomposition. Its
existence is given below.

Lemma 4. There exists a maximal disk for .A such that at most; arcs fromd.A are
(completely) contained in each componentiof D.

Proof. Each pointp € M (.A) corresponds to a unique maximal diBk for A. Let f(D,,)

be the number of arcs froA in the largest component induced y,. As long as
f(Dp) > %, the component that realizg’§D,,) is unique, and we can decreaggeD,,)

by continuously moving on M (A) such thatD,, enters into this component. This process
terminates at some poipt wheref(D,-) < %. We never move back the way we came, as
the component we move out never exceeds a siZg of 0

We are left with the algorithmic problem of finding some maalrdisk that yields a
well-balanced partition. Observe that the optimal pgihtabove may be not unique, be-
cause the numbef(D,) is invariant under motion of within the relative interior of any
fixed edgee C M (A). Let us defineWalk(e) as the path length idZ(A) from e to p*.
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Fig. 5: Walk (dashed) and cut (dotted)

Further, defineCut(e) as the size of the smaller one among the two subtrees whidticon
tute M (A) \ {e}. See Figure 5. Any tree with small "cuts’ tends to have shwo#lks’, in
the following respect.

Lemma 5. Lete be an edge olM (A), chosen uniformly at random. Théf{Walk(e)] =
O(EI[Cut(e)]).

Proof. Orient all the paths id/(.A) away from the poinp*. This defines a partial ordet
on the edges al/(.A). That is, for any two edgesande’ on the same path {*, we write
e’ < eif ¢’ is at closer distance {o*. We have the set equality

U {(we)la<et= |J {(eb)|b>e}

eeM(A) eeM(A)

because either set contains each pair of the relation gxate. The (disjoint) subsets
united in the left setl, represent all the paths i/ (.A) between its edgesandp*. Thus
we haveE[Walke)] = £ - |L|, wherem is the number of edges d#/ (.4). Each subset
united in the right setR, represents that one among the two subtredg i) \ {e} which
avoidsp*. So we getl - |R| > E[Cut(e)], because foCut(ec) we always consider the
smaller subtree. Moreover, if we neglectfihall the subtrees of sizes larger thgn then
the cardinality of the set drops by a constant factor (of adtihdf < would be a total order,
hence less). This implieS[Cut(e)] > L - ‘Tf‘. The lemma now follows fromR| = |L|.O
Lemma 5 motivates the following disk finding algorithm whiobmbines random cut-
ting with local walking. Its main subroutine, MAX], selects for an art C dA its mid-
pointz and returns the unique maximal disk fdrwith = on its boundary. For the ease of
description, we assume that this disk splitsnto exactly two components. The algorithm
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can be easily adapted, otherwise, and its runtime even alsselLet > 3 be a (small)
integer constant.

Procedure CUT (A)

PutA’' = A
Repeat
Choose a random aboof 9 A’
ComputeD=MAX(b) and letA, be the larger
component of4 induced byD
AssignA’ = A’ N Ag
Until A, contains less than — % arcs

ReportD

Procedure WALK (A)

Choose a random aboof 0.4
ComputeD=MAX(b)
Let .4, be the larger component induced by

While A, contains more than — 2 arcs do
Letb; (b2) be the first (last) complete arc 8f4 in Ag
ComputeD;=MAX(b1) and Do=MAX(b3)
Assign to.A, the smaller one of the respective larger
components ofd for D; and D
Memorize the corresponding digk € { D1, D>}

ReportD

The disk finding algorithm now combines the CUT proceduretardALK procedure
as follows. The repeat loop of CUT and the while loop of WALkK axecuted by turns.
Whenever CUT is closer to the goal (i.e., yields a smallegdat component than does
WALK), we readjust the current disk for WALK to be that of CUTermination takes
place in either WALK or CUT.

To analyze the resulting runtime, let us first consider trsigasnent of arcs onA to
edges ofM (A), as done in subroutine MAX. Namely, if MAXf=D then arc is mapped
to the edge that contains the center @. Observe that either, 1, or 2 arcs are mapped
to a fixed edge. Moreover, no two unaddressed edges and noowmydhddressed edges
are neighbored. This assignment is sufficiently uniformaiovey randomness from arcs to
edges.

It remains to apply the result of Lemma 5, which asserts tloatree structure can
have both small cuts and long walks. Observe that this is, ttiue for the medial axes
of all the subshapes ofl considered by the algorithm. In the worst case of walk length
being balanced with cut number, a boundif,/n) on the expected number of total loop
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executions in CUT and WALK holds.

The costly part in both procedures is their subroutine MAXpae expected number of
calls obeys the same bour@(,/n). ComputingD=MAX (b) has a trivial implementation
which runs inO(n) time: We initialize the diskD as the (appropriately oriented) halfplane
that support$ at its midpointz and, for all remaining arcs; C 0.4 that intersectD, we
shrink D so as to touch; while still being tangent té atz. The most complex operation for
shrinkingD is computing the intersection of two circles. In particubard unlike previous
medial axis algorithms, no conics take part in geometrigaiens.

In summary, the randomized complexity for computing the ialealxis is given by
T(n) =T(in)+T((1 - 2)n)+O(n3/?) for ¢ > 3, which evaluates t@'(n) = O(n?/?).
In many cases, however, will the algorithm perform subg&iiptetter. Letd be the graph
diameter of M (A). Then the loop in WALK.A) is executed less thadh times. So, for
example, ifd = ©(logn) then an overall runtime o®(nlog”n) is met. For the other
extreme case] = O(n), our strategy is even faster. With constant probabilityedge on
the diameter is chosen, afn) such edges haveCut(e) = ©(n). The expected number
of loop executions in CUTA) now is only O(1), and anO(nlogn) algorithm results.
We conjecture that the latter situation is quite relevanractice. In many applications,
for typical shapes their medial axes will not branch exteglgi Even if so, the branching
will be independent of., because each branch will be approximated by a large nunfiber o
circular arcs in order to achieve the predefined precision.

The output of the algorithm is a list 61(n) points on)M (.A), namely, the centers of the
splitting disks, plus a list o®(n) edges connecting them. Each edge is given implicitly by
its defining two arcs oA.4. To make sure that the reported pointlist includes all thréaes
of M(A), base cases that involve constantly many (pieces of) ailigirts fromo.4 have
to be solved directly. (The constant is at ma#t 0.4 is C*.) Note that the algorithm works
exclusively ond.A except for a final step, where the conic edges/6fA) are explicitly
calculated and reassembled. This gives rise to increasadniustability in comparison to
existing approaches.

Opposed to approximating4 with the same accuracy by a polyline of siXe our cir-
cular arc algorithm take®(n3/?) = O(N) time; see Corollary 1 in Section 3. Thus, even
for (probably rare) worst-case inputs, our simple algonitompetes asymptotically well
with previous methods. Other advantages over polygondl éso point sample) approxi-
mations are described in the next section.

7. Convergenceof Medial Axis

A well-known unpleasant phenomenon of the medial axis isnigsability under pertur-
bations of the shape boundary. Several papers discusssigshe have been published

aThere is a subtlety to be noted in the (degenerate) case wlli¢s#) is a tree of non-constant maximal degree.
As we always cut and walk on edges instead of vertices/¢f4), termination might not be reached. This problem
can be dealt with easily with a modification described .in



December 10,2009 12:41 WSPC/Guidelines arcneu IJCGA

16 Aichholzer, Aurenhammer, Hackl, Jittler, Ra®iy

Fig. 6: Small point sample (dashed Voronoi diagram) versusdrcs (solid medial
axis)

recently. A result in® shows that stability is, in general, not given unless pédtions
areC?. In particular, medial axis convergence is not guaranteegdlygonal approxima-
tions. To deal with general shapes, the so-caNededial axis has been introduced as a
tool in 7. After drawing a point sample from the shape boundary, th@noi diagram of
these points is constructed and pruned appropriately Xfimedial axis converges to the
original for vanishing sample distance. Drawbacks are &ingel sample size for a close
(and homotopy-equivalent) approximation, the lack oféts behavior, and the need of
computing a general planar Voronoi diagram. Figure 6 giveiiastrative example.

We prove in this section that convergence of the medial ax@euthe Hausdorff dis-
tance comes as a byproduct of the careful (though, of costileC!) biarc boundary
conversion described in Section 3.

Given some shapd and a poinp on its medial axis\/ (A), denote withD,, the unique
maximal disk with centep. Recall that\/ (A) is a geometric grapht, defined as the set of
centers of all maximal disks fod. Define deaf of M (A) as a vertex with a single incident
edge. There are two ways how a vertex\éf.4) can be a leaf; it is either the center of the
osculating circle at an apex (a point of maximal curvatufe).d, or it is a ‘sharp’ vertex
of 0. A. The first type will be called groper leaf Our convergence proof is based on an
analysis of the behavior of the medial axis in the vicinityppbper leaves, as well as at
points being sufficiently distant from proper leaves.

For a pointp € M (A) define, < 7 as the largest angle atspanned by two points in
the setD, N 0.A. Further, put

. : 4
kp = & which is equivalent to cos %” =1-—. (1)
1 —cos P

Whenp is not a proper leaf the§, > 0. The lemma below, which addresses the parts of
the medial axis sufficiently remote from the proper leavegsihot assume any regularity
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condition for the shape boundaries. A convergence reswdtsmmilar spirit is presented
in?.

Lemma 6. Let A and B be two shapes whose (two-sided) Hausdorff distance satis-
fies H(0A,0B) = ¢. Let D, denote any maximal disk foad whose radiusr, fulfills
rp > ky - € > 0. Then there exists a maximal digk, for B such thafl|p — ¢|| < k), - €.

Proof. Letz,y € D, N 0.A be two points realizing the anglg, that is,Zzpy = §,. Let
D;, be the largest disk centeredieaind contained i8, and letz € D, N 9B. DefineD, as
the maximal disk with respect # and containing).; then clearly: € dD,. We consider
the set of all diskD,, containingD;, and satisfying: € 9D,.. Within this set we defin®,
as the disk satisfyintip — s|| = k, - . See Figure 7 for an illustration.

Fig. 7: Notations from the proof of Lemma 6.

Without loss of generality we assume that the angte Zzpz < 7 satisfiesy > ¢, /2;
otherwise one may swapandy. Due to this, and taking (1) into account, we get

4
k:p-rp-cosozgkzp-rp-cos%” :k:p-rp-(l—k—) =kp-rp—4r, (2)
P
As we assumed tha}, > &, - €, we obtain
kp-rp-cosa < kp-rp—2r, — 2k, - €+ 2e. 3)

This inequality implies

7’12)+(kp~€)272~Tp~kp~€~COS(7T7a)<(Tp*2€+kp~€)2. 4)
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Due to|p — z|| = rp and||s — p|| = k, - £, we thus have
lp =2 +lIs = plI* = 2 lp = 2] - Is = pll - cos(m — @) < (rp — 26 + kp - €)*. ()
Finally we apply the law of cosines to get
|s — || <rp —2e+k,-e or equivalently, ||s—z||+e<r,—c+ky,-e. (6)
On the other hand, the radil|s — z|| of D, is at least-, — ¢ + k,, - &, by construction.
ConsequentlyD, contains thes-neighborhood of:, hence at least one point 613. This
impliesD, C Dy, hence
lp—all <llp— sl =kp-e. @)
This completes the proof. |

Letp € M(A) be a proper leaf, let € 0.A be the corresponding apex, and consider
some poiny lying on the unique edge incidento Then the maximal disb,, touchesH.A
at two points, which are the endpoints of a segmeatdthroughz of length, say/. When
¢ — 0, then clearlyy — p. The following lemma describes the speed of this convergenc

Lemma7. If 0A is piecewise analytic and? in the neighborhood aof then there exists
a constantw > 0 such that

lg = pll <w- 2.
Proof. Fora pointy € 0A, letn, denote the normal line 0.4 throughy. Given an apex
of 9.A, define the set
II = {ny ﬂnz | y 7é Z, d(y,ZE) S E,d(z,x) S e}v

of intersection points of the curve normals, with distadckeing measured alongA.
Clearly, ¢ € I,.. Using the formal Taylor expansion 64 at « it can be proved directly
thatd(p, I,) < w - ¢2 for suitablew > 0. |

We are now prepared to prove the claimed convergence result.

Theorem 1. Let some shapd with piecewise analytic boundaty4 be approximated by
a sequence of shap#h,, wheredB,, is a spline ofn circular arcs produced by the spiral
preserving variant of Algorithm BISECT. For the one-sidealiBdorff distancé we have

§(M(B,),M(A)) =0(n~') and
S(M(A), M(B,)) = O(n~*?).

Proof. We will give the full proof only for the case of globalig? boundaryd.A which
does not contain circular arcs. The proof generalizesyetsthe case wher@A is an ar-
bitrary concatenation of analytic pieces, and thus, inipaler, may contain sharp vertices.

As A is assumed to be globally?, all leaves ofM (A) are proper leaves. For suffi-
ciently largen, each leaf of\/ (A) is also a leaf of\/(B,,), and all leaves of/(B,,) are
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contained inM (A). This is because the circular arc spling,, preserves not only spirals,
but also position, normal vector, and curvature at each a0 A.

Let us remove frond3,, the containing circular art, for each apex: whose oscu-
lating disk is contained i8,, (and hence is maximal fd§,,). This decomposess,, into
components. We defing, as the minimum of the lengths of all the removed adrcsThis
minimum length shrinks to zero, @4 does not contain circular arcs, and it behaves as
Q(n~1) by construction of3,,. Now define

&, = 2arcsin(d, /2L), (8)

where L denotes an upper bound on the geometric diameters of alhtygess,,. Apart
from disks for leaves, each maximal digk, for B,, has contact to at least two differ-
ent components. (Otherwise, there would be a supplemelei@irpf A1 (15,,).) For such a
disk D, we have the angle inequalify > &, provided that: is sufficiently large (due to
the fact thats — oo impliesd,, — 0).

Becausel,, = Q(n~!) and sinceL is a constant, we have— cos(&,/2) = Q(n=2).
Moreover,5(0.A, 0B,) = O(n=2) by construction. That is, the condition in Lemma 6
holds for all maximal diskg,, for 3,, (with exception of finitely many proper leave},
whenn is sufficiently large. Indeed, in Lemma 6 we hayge- ¢ = O(n™1). By the same
lemma, this is also a bound djp — ¢|| and therefore we gé( M (B,,), M(A)) = O(n™1).

The other direction can be proved similarly. For each jeaff M (.A), with correspond-
ing apexz of 9.A, we define a neighborhoeg on d.A of lengthn—3/4, Removal of all the
segments;, leads us to two types of maximal disk, for A, depending on whethdp,
touches a single segment (¢ is then close t@), or not. For the latter type, the analysis is
the same as above, and shows thapproaches the center of some maximal disk3pat
speedD(n—3/2). For the former type, due to Lemma 7, the distance betwesnd leafp
(which is also a leaf of\/(13,,)) behaves a®)((n=3/4)?), i.e., the same. The one-sided
Hausdorff distancé(M (A), M (B,,)) thus converges at that speed. m|

Note that the global convergence speed of the medial axisresipect to the Hausdorff
distance i) (n~!), whereas the error of the boundary approximation improsé€xa—3).
This is due to the behavior of the medial axis close to itsdsaWhen we restrict ourselves
to the \-medial axis’ for any \ > 0, thend,, in formula (8) becomes a constant, and the
approximation speed i®(n~3) by Lemma 6. This compares favorably to using a size-
point sample ord.A and pruning its Voronoi diagram, as the approximation speéuen
only©(m=1).

8. Conclusions

We have given several examples for the efficient handlindnapes with nonlinear bound-
aries. In particular, the use of circular arcs for boundargversion has been shown to
be highly useful. Our results profit from the confluence ofrgetric approximation the-

ory and computational geometry. To our knowledge, this ésfitst systematic approach
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-

Fig. 8: Exact medial axis of circular arc boundary represton (1JC) ver-
sus polygonal boundary representation (GA).

in this direction. Compared to conversion into polylind® gain in efficiency increases
with the complexity of the subsequent algorithm. This malfésrdable suboptimal (hence
sometimes less complicated) algorithms.

Based on the theoretical investigations in the presentrpa@dave developed an effi-
cient and reliable implementation of the 2D medial axis tamsion; se€' for details and
empirical evaluations. An example of the obtained ressltgven in Figure 8. It shows the
exact medial axis of a circular arc approximation as opptse¢lde exact medial axis of a
piecewise-linear approximation.

Other approximating primitives could be considered (ecgbics). In our opinion
though, circular arc splines yield the best trade-off. Thespnted algorithms, in princi-
ple, work for arbitrary primitives. In particular, in our mial axis algorithm, the added
numerical complexity is not raised further by the algorititgelf. This is a nontrivial prop-
erty of this algorithm, which is the first to combine pracliga efficiency, and stability'.
Its generalization to shapes with holes is possible, as Leinas a counterpart for this
case.

Finally, we raise the question of whether results of thisgpajan be extended to three-
space.
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Appendix

Let ¢(t) be a given analytic curve on the domdip, t;] and suppose thaf(t) contains
neither inflections nor apices jty, t1]. For given step sizk, consider geometric primitives
b(t, h) that approximate the curve segmedits ¢ + h|. The geometric primitives are either
line segments or arcs or biarcs. Assume that the domai(tptan slightly be enlarged to
[to, t1 + hmax), Whereh,.x is a suitable constant which specifies the largest stepsize.

In order to evaluate the one-sided Hausdorff distance f6mn) to c[t,t + k], we
analyze the stationary points= 7; of the function

d(r,t,h) = min g —c(r)|, 7€t t+h],

qeb(t,h)
which are characterized by
ﬁd(T t,h) =0, i=1 s(t)
87' s vy T:Ti_ 9 Bt I .

Provided that is sufficiently small, the numbext) of stationary points is independent
of t. For instance, this number isfor line segments and for arcs interpolating three
points. For each stationary poirjtwe consider the associated distance

d; (f, h) = d(Tz (t7 h)a t h)

where we defin@;(¢,0) = 0. The one-sided Hausdorff distan&@(¢, h), c[t, t + h])
is the maximum of all these distances.

For each value of, consider the Taylor expansion iat= 0. The first non-vanishing
derivative is used to define the remainder term,

1
di(t,h) = 5 47 (¢, E () - B,

wherelk] indicates the:*" derivative with respect to the step siz@andh} (h) € [0, h].
The orderk of this term is called thapproximation orderof the geometric primitive; it
equals for line segments anglifor circular arcs.

Since the curve(t) contains neither inflections nor apices, and due to the cotnpss
of its domain[ty, t1], there exist positive constants D such that the functiong; satisfy

0< C<d£k](t,0) < D.

Moreover, since thét" derivative is continuous, there exists a step gize 0 such that
. C _ Ky, o«
Y(t, h*) € [to, t1] x [0, 4] : gﬁdi (t,h*) <2D.

Consequently, ifi is sufficiently small, then the one-sided Hausdorff distansatisfies
1C 1.
——pF << = .
k!2h <6< k!QDh

This provess = ©(h*) for the case wherg is a constant.



