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Abstract

In this paper, we propose a novel version of weighted isogeometric collocation that is especially
suited for adaptive THB-spline refinement.

It is well known that the choice of the collocation nodes is crucial to ensure stability and good
approximation properties, especially when adaptive refinement is performed. In order to address
this issue, we make use of a particular class of locally supported quasi-interpolant schemes to pro-
pose the new method of Weighted Isogeometric Collocation based on Spline Projectors (WICSP).

We show that WICSP performs well in the case of tensor-product spline discretizations, both
with respect to the rate of convergence and computational complexity. In particular, we ob-
serve experimentally an optimal rate of convergence for odd degree basis functions and obtain a
dimension-independent computational complexity O(np) for matrix-free applications, similar to
other approaches such as weighted quadrature [8] and clustered collocation [30].

We explore how these results extend to the case of adaptively refined THB-spline discretiza-
tions. We observe that WICSP is compatible with THB-spline refinement, exhibiting good accu-
racy and low computational costs. In fact, we get a complexity of O(np2d) for matrix assembly and
O(npd) for the matrix-free case. This compares well with the available methods for isogeometric
THB-spline discretizations.
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1. Introduction

Within the framework of Isogeometric Analysis [20], collocation is a particularly simple and
efficient method to solve PDEs on complex domains. In contrast to Galerkin–based approaches,
which transform the original problem to its weak formulation, it directly solves the strong form
of the equation via interpolation at prescribed collocation nodes. This eliminates the need of
performing numerical integration, but requires discretization spaces with higher regularity, which
are naturally provided by the isogeometric framework. Indeed, spline basis functions are a natural
choice for this type of discretization, since their smoothness can be easily tuned according to the
specific differential operator, thus allowing to solve higher order equations by simply controlling
the regularity of the bases.

Isogeometric collocation has been an active research topic especially because of its computa-
tional efficiency. Numerical quadrature in Galerkin–based IGA entails high computational costs
of the matrix assembly routines, and – although remarkable progress has been made in the last
years (see [8, 21, 32] and the references cited therein) – it still constitutes a relevant problem.
Isogeometric collocation allows for a much faster assembly of the system matrices, especially if
basis functions of high degree are used.

∗Corresponding author
Email addresses: alessandro.giust@dk-compmath.jku.at (Alessandro Giust), bert.juettler@jku.at (Bert
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Despite its evident efficiency, the approximation power of isogeometric collocation is still not
completely understood. It has been observed that the choice of the collocation nodes affects both
the accuracy and the stability of the method. Typical choices of the collocation nodes include the
use of the Greville abscissas of spline bases [3], and of Demko abscissas [10]. However, already
in the case of second order elliptic PDEs, it has been noted that these standard choices lead to
sub-optimal approximation properties. In fact, the L2 error converges as O(hp−1) for odd and as
O(hp) for even degree.

More recently, the adoption of superconvergent points as collocation nodes turned out to be a
game-changer concerning the approximation properties of isogeometric collocation. These points
constitute an approximation of the Cauchy-Galerkin points (i.e., the points where the Galerkin
residual is zero), and their estimated location can be computed numerically through supercon-
vergence theory [18]. Since the number of superconvergent points exceeds the total number of
degrees of freedom, a least-square approach has been adopted in [1] to determine the approximate
solution. This choice leads to optimal approximation properties for odd degree basis functions but
increases the computational costs.

Montardini et al. [30] present a selection strategy in order to determine a suitable subset
of the superconvergent points that matches the dimension of the discretization space. Again,
optimal approximation power for odd degree basis functions was observed experimentally, but
now with lower computational costs. In [42], the authors show how to construct a suitable basis
transformation that allows to recover superconvergence properties using the Greville points at the
price of introducing additional computational costs.

Due to its simplicity and computational efficiency, isogeometric collocation has been applied
successfully to a wide variety of practical problems, ranging from elastostatics [4], shell problems
and beams [34] to phase-field modeling [19]. Moreover, the use of non-standard spline basis
functions has been investigated [27], and tailored solvers have been developed [11]. Finally, an
extension to multi-patch spline discretizations was recently proposed in [24].

In order to deal with complex problems, it has been observed that constructions for dis-
cretization spaces that support local refinement are crucial for efficient and accurate numerical
simulations. In the context of isogeometric analysis, the developments focused initially on the use
of T-splines [5, 12] and were later extended to hierarchical B-splines [37, 41]. Further research was
devoted to the application of PHT-splines [31, 43] and LR-splines [23], while the use of truncated
hierarchical (TH) B-splines was studied in [14].

While the use of splines that support adaptive refinement in Galerkin-based isogeometric anal-
ysis is relatively well understood, only rather few results exist for the case of isogeometric collo-
cation. In their seminal paper about collocation methods, Schillinger et al. [38] introduced the
weighted isogeometric collocation approach and showed it to be suitable for the case of adaptive
hierarchical NURBS discretizations. This technique permits to avoid problems of linear depen-
dence or instability by considering weighted sums of point evaluations. The collocation nodes are
derived by combining Greville abscissas of different levels, and the weights are found based on
the B-spline refinement coefficients. The use of T-splines was studied in [9] and was employed to
solve second- and fourth-order boundary-value problems. In [22] the authors used PHT-splines to
perform adaptive numerical solutions introducing an hybrid Galerkin-collocation method able to
cope with multi-patch structures.

Similar to the case of Galerkin-based isogeometric analysis, the use of adaptive spline refine-
ment possesses great potential for improving the efficiency of collocation-based numerical simula-
tion. Further progress can be expected with the help of new approaches for the selection of the
collocation nodes (and weights in the case of weighted collocation).

We will focus on THB-splines, since they possess several advantageous properties that make
them well suited for geometric modeling and simulation. In particular, they possess the partition of
unity property, which is not provided by the standard hierarchical construction. Furthermore, they
exhibit strong stability [16], algebraic completeness [29] and — compared to standard hierarchical
B-splines – better conditioning and higher sparsity of the resulting system matrices.

For THB-spline-based isogeometric discretizations, we make use of a certain class of locally
supported quasi-interpolation (QI) operators in order to establish the new Weighted Isogeometric
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Collocation method based on Spline Projectors (WICSP). As indicated by this name, our approach
defines the set of collocation nodes and weights through QI schemes that possess the additional
property of reproducing spline functions.

The use of these QI operators allows to obtain a unifying weighted collocation framework
that encompasses both THB-splines and tensor-product splines. The use of quasi-interpolation to
perform collocation with quadratic splines was originally introduced in [13]. While that article
considered a QI operator that is not a spline projector and focuses on uniform refinement of low
degree splines, it still showed promising convergence properties that match the approximation
power of the quadratic splines.

In the present paper, we connect these observations with the recently introduced framework of
weighted isogeometric collocation of Schillinger et al. [38] and employ a particular class of locally
supported spline projectors to propose the new method of Weighted Isogeometric Collocation
based on Spline Projectors (WICSP). This allows us to consider isogeometric discretizations of
PDEs, using splines of any degree. Moreover, we explore how these results can be extended to the
case of adaptively refined THB-spline discretizations.

The remainder of the paper is organized as follows. First, Section 2 presents the general
framework of weighted isogeometric collocation. Subsequently, we introduce our new discretization
operator based on spline projectors in Section 3. The next two sections, which present numerical
results and analyze the computational complexity, are devoted to tensor-product B-splines and
to THB-splines, respectively. Finally, we conclude the paper with a discussion of possible future
developments.

2. The weighted collocation framework

We present a general framework for isogeometric collocation. Moreover, we introduce the
discretization operator later employed in WICSP.

2.1. Model problem and discretization

We consider a simple boundary value problem defined in Ω ⊂ Rd

Du− f = 0 u ∈ V0

u|∂Ω = 0

where V0 is a suitable infinite dimensional space such that u = 0 on ∂Ω and D is a linear operator.
For example, choosing Du = −∆u leads to the Poisson equation. This includes the case of the pull-
back of an equation to the parameter space which is needed to perform isogeometric simulations.
In this situation, the operator D takes the form

Du =
∑
t∈T

ΦtDtu (1)

with elementary differential operators (i.e., derivatives) Dt and certain coefficient functions Φt

that depend on the geometry mapping and on derivatives thereof. The index t varies in a finite
index set T , that does not depend on the discretization.

We perform a space discretization by introducing a finite-dimensional space V0,h ⊂ V0, which
is spanned by the basis

B = {βj : j ∈ J }

with some index set
J = {j : 0 < j ≤ n}.

Clearly we have |J | = n = dimV0,h. Our aim is to approximate the exact solution by an element
of V0,h, which is therefore expressed as a linear combination of the basis functions

uh =
∑
j∈J

ujβj ,
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with coefficients {uj}j∈J . In particular, we are interested in tensor-product spline spaces and their
generalization to hierarchical splines, which are spanned by HB- and THB-splines. The appendix
recalls the fundamental notions and definition concerning these spline functions.

Furthermore, we need to perform a discretization of the equations. This is achieved by invoking
the linear discretization operator

Λ : Cr(Ω)→ Rm,

which is applied to the space discretization Duh − f . The non–negative integer r denotes the
smoothness which is needed to apply Λ. For instance, in the case of second order PDEs, we have
r = 0 for standard Galerkin discretizations and r = 1 for collocation. The individual components
of the operator will be denoted by

λi : Cr(Ω)→ R, i = 1, . . . ,m.

We arrive at the linear equations∑
j∈J

λi(Dβj)uj = λi(f), i = 1, . . . ,m

which are solved for the coefficients uj , either directly (if m = n) or in the least-squares sense (if
m > n). We will focus on the first case, since the latter approach tends to generate matrices with
a high condition number, cf. [1].

2.2. Discretization operators

Several possibilities for the choice of the operator Λ are available:

• In the Galerkin approach, one chooses

λG
i (g) =

∫
Ω

g(x)βi(x) dx

The integral is then often re-written via integration by parts, which leads to the correspond-
ing weak form of the problem. This reduces the required order of differentiability for the
trial functions. A similar approach, using test and trial functions that belong to different
spaces, can be used to derive the Petrov-Galerkin method.

• An algebraically equivalent system of equations is obtained when considering any other basis
Γ = {γj : j ∈ J } of V0,h. Among the many bases of the of the discretization space, the dual
basis with respect to the L2 inner product is characterized by the conditions

〈βi, γj〉 =

∫
Ω

βi(x)γj(x)dx =

{
1 if i = j

0 otherwise

It is closely related to the best L2 approximation of g ∈ Cr(Ω) by an element of V0,h, which
takes the form ∑

j∈J
〈γj , g〉βj .

For this basis we get the operator components

λDG
i (g) = 〈γi, g〉 =

∫
Ω

g(x)γi(x)dx

which we will denote as the dual Galerkin functionals. Clearly, using these functionals for
the discretization is more of theoretical interest, since the dual basis functions are globally
supported (thus leading to dense matrices) in general.

4



• An isogeometric collocation-based discretization is generated by choosing the functionals

λIC
i (g) =

∫
Ω

g(x)δ(x− ξi)dx = g(ξi)

where δ is the Dirac delta function and ξi denotes the i-th collocation node. The resulting
system of equations then simplifies to point evaluations,∑

j∈J
Dβj(ξi)uj = f(ξi), i = 1, . . . ,m

The choice of the collocation nodes is crucial for the stability and the approximation prop-
erties of the discretization.

• A similar approach results in the weighted isogeometric collocation (WIC) discretiza-
tion. In this case we have

λWIC
i (g) =

∫
Ω

g(x)
∑
k∈Ki

wikδ(x− ξk)dx =
∑
k∈Ki

wik g(ξk)

where we use several collocation nodes ξk for each functional and a weighted sum with certain
weights wik. The index k varies in an associated index set Ki. The entries of the final linear
system are weighted sums of point evaluations∑

j∈J

( ∑
k∈Ki

wikDβj(ξk)
)
uj =

∑
k∈Ki

wik f(ξk), i = 1, . . . ,m

As in the previous case, the choice of the collocation nodes and weights influences the
properties of the method.

• We are interested in a special case of the latter framework. One may choose the components
of the linear operator such that

λWICSP
i (g) = λDG

i (g)

holds for all g ∈ V0,h. In other words, we choose a weighted collocation-type discretization
operator, which coincides with the dual Galerkin discretization operator on the discretization
space. This can be achieved with the help of a suitable spline projector, and thus we will
will refer to it as Weighted Isogeometric Collocation based on Spline Projectors (WICSP).

3. The spline projector-based discretization operator

We present the QI scheme used in WICSP. We focus on its properties, such as accuracy and
complexity, and discuss the construction of the grid of collocation nodes. Furthermore, we present
some numerical examples which motivate our choice.

3.1. Quasi-interpolants

In order to find the functionals λWICSP
j , we employ locally supported quasi-interpolant (QI)

schemes, which are expressed as

Sg =
∑
j∈J

λj(g)βj

where the coefficient functionals λj(g) are typically computed through linear combinations of point
evaluations. QI schemes turn out to be efficient methods to perform approximations of given
functions using splines. In fact, they possess a low computational complexity and provide optimal
approximation power under suitable assumptions. These include the property of reproducing
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polynomials of degree p. QI schemes for univariate splines (that extend naturally to the tensor-
product case) that possess this property were studied by Sablonnière in several papers, see [35] and
the references cited therein. We are interested in QI schemes that possess the additional property
of being spline projectors, since this appears to have a beneficial effect concerning the accuracy of
the approximation. The following example motivates this additional requirement:

Example 1. We use the Sablonnière quasi-interpolation operator (denoted as Ph since it repro-
duces polynomials) to approximate f(x) = sin(5πx) on Ω = [0, 1] by splines with knots in hZ and
compare the results with the fitting-based QI (denoted as Sh since it reproduces splines) from
[17], which will be described in more detail in the remainder of this Section. Figure 1 reports
the maximum error on [0, 1] (left) and at knots and knot-span midpoints (right). While both
schemes achieve the same optimal rate (order p+ 1) of convergence, the spline projector leads to
more accurate results, especially for larger values of the degree p. Moreover, it appears to create
superconvergence at specific points for even degrees.
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Figure 1: Max error in [0, 1] (left) and max error at knots and knots-span midpoints for Sh and Ph (right).

In the case of hierarchical B-splines, spline projectors were investigated already in [25], based
on a recursive construction. The case of THB-splines was first studied in [40], introducing a scheme
that required O(pd) evaluations and O(pd) floating point operations per degree of freedom. The
follow-up paper [39] improved the efficiency by sacrificing the spline projector property.

More recently, a fitting-based construction of spline projectors, requiring only O(1) function
evaluations (and O(pd) floating point operations) per degree of freedom, has been derived in [17]
and was experimentally shown to give more accurate results. This construction was shown to be
general and suitable for (T)HB-splines including tensor-product splines.

We briefly recall these results, in order to make this paper self-contained. We restrict ourselves
to the case of admissible hierarchical meshes of class 2 [7]. A similar construction can be performed
also for a non-graded mesh but would incur a higher computational cost. It has been shown that
mesh grading ensures better conditioning and higher sparsity of the resulting system matrices.

3.2. The grid of weighted collocation nodes

The construction is based on a grid of weighted collocation nodes

{ηk : k ∈ K}

with indices taken from a suitable index set K, where we perform evaluations. We distinguish
between two cases:

• Case 1 – Tensor-product splines: Here we make use of superconvergent points. It has been
noted that the use of those points results in improved approximation properties of collocation
based technologies [1], [30]. These points are an approximation of the Cauchy-Galerkin points
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(i.e., the points where the Galerkin residual is zero). Estimates of their location are reported
in Table 1. These points naturally define a regular grid, see Figure 2. We note that in the
case of basis functions of even degree, that grid is obtained simply via one round of dyadic
subdivision.

• Case 2 – Hierarchical splines: We construct the grid subdividing each active cell either once
or twice via dyadic subdivision, and the resulting vertices form the nodes, see Figure 3 for
an example. An active cell of level ` is subdivided twice if the support of at least one of the
(p+ 1)d TPB-splines of level ` that are non-zero on it contains an active cell of level `+ 1,
and only once otherwise. Note that this grid contains the Greville points for uniform (i.e.,
tensor-product) meshes, and it is then even identical to the grid of superconvergent points
for even degrees.

Table 1: Estimated location of the superconvergent points in [−1, 1]

Degree SC. points

p = 3 ± 1√
3

p = 4 −1, 0, 1

p = 5 ±
√

225−30
√
30

15
p = 6 −1, 0, 1

Figure 2: From left to right, superconvergent grid for B-splines of degree p = 3, 4, 5, 6.

Figure 3: Example of mesh and corresponding grid of evaluation nodes for THB-splines of degree p = 3.

3.3. Defining the functional via local least-squares approximation

For each basis function βj we obtain the functional λWICSP
j as follows:

1. We define the local domain1 Ωj = supp β̃j , where β̃j denotes the mother (i.e., un-truncated)

HB-spline of the THB-spline βj . In particular, we use βj = β̃j for tensor-product splines.

1The assumption of graded meshes implies that in each domain Ωj at most two hierarchical levels are present.
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2. The corresponding local hierarchical spline space Vj is defined by restricting the mesh of V0,h

to Ωj , with the associated locally defined truncated hierarchical basis Bj = {β̂` : ` ∈ Lj}.
This basis includes βj by construction.

3. We select a local grid of evaluation nodes (ηk)k∈Kj
, Kj ⊂ K is a subset of the full index set

that we introduced for the evaluation nodes. In order to reduce the total number of function
evaluations, we choose them from the global set of evaluation nodes, trying to re-use them
as often as possible by employing index sets Kj that are non-disjoint. Again we distinguish
between two cases:

• Case 1 – Tensor-product splines: We use all the grid points within the support of the
function. (We use enlarged supports near the domain boundaries.)

• Case 2 – Hierarchical splines: The support of the mother HB-spline consists of (p+ 1)d

cells of level `. We use the grid points obtained by applying dyadic subdivision twice
(if next finer level is present within the support) or once (otherwise). This results in
(4p+5)d and (2p+3)d nodes in the first and second case, respectively. In the first case,
the number of nodes can be decreased to (3p + 2)d to obtain the reduced point grid,
where the centrally located p + 3 nodes per direction are placed with half the density
of the p nodes near the boundaries, see Figure 4.

4. We determine the functional λWICSP
j approximating the function g on Ωj via discrete L2

fitting. More precisely, we solve the equations∑
`∈Lj

c`β̂`(ηk) = g(ηk) , k ∈ Kj ,

in the least-squares sense, which results in the coefficients

(c`)`∈Lj = (ATA)−1AT f

with
A = (β̂`(ηk))`∈Lj ,k∈Kj , f = (g(ηk))k∈Kj .

The selection of the evaluation nodes ensures unisolvency. The functional λWICSP
j is finally

determined by setting λWICSP
j = c`, where β̂` = βj . More precisely, we pick the row of the

matrix (ATA)−1AT that corresponds to βj and multiply it with the vector f .

Figure 4: Reduced grid of nodes for degree p = 3 (left) and p = 4 (right).

We analyze the computational cost per coefficient of the projection. The domain Ωj consists
of active cells of at most two levels due to the mesh grading assumptions. The number of possible

combinations of active cells is bounded by 2(p+1)d , which is a very pessimistic upper bound.
Moreover, the grid of nodes contains O(pd) points. This holds for both the grids obtained by

dyadic refinement and for the superconvergent one, which is employed in the tensor-product case.
Finally, we have to evaluate the effort to perform the local discrete L2 fitting. We may as-

sume that all the (not more than 2(p+1)d) possible rows of the matrices (ATA)−1AT have been
precomputed and stored in a look-up table. Finding the right entry via binary search requires at
most

log 2(p+1)d = O(pd)
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operations. The unknown coefficient is calculated performing the inner product between the
precomputed row vector of the matrix (ATA)−1A (which is a generalized inverse matrix of A) and
the column vector that collects the values of g on the grid of evaluation nodes.

We conclude that the projection step requires O(pd) flops. More precisely, the number of
multiplications – and also the number of additions – is equal to the number of evaluation nodes.

3.4. Use of QIs for discretizing ODEs
We apply WICSP and Sablonnière’s quasi-interpolation operator to the Poisson equation

−u′′(x) = f on Ω = [0, 1] .

We consider the exact solution u(x) = sin(5πx) and impose the Dirichlet boundary conditions by
simply interpolating the values at the boundary.

Figure 5 reports the resulting convergence rates for degrees p = 3, . . . 6. The following obser-
vations are in order:

• Both methods perform equally well for low degrees (p ≤ 4) on dyadic grids, while the spline
projector-based discretization gives more accurate results on the superconvergent grid of
points for p = 3.

• The discretization via weighted collocation based on Sablonniére’s quasi-interpolation oper-
ators essentially fails for larger degrees, p ≥ 5. This is due to the fact that the total number
of collocation nodes is less than the dimension of the spline space.

• The discretization via WICSP also works for larger degrees. The use of the superconvergent
grid of points for odd degrees gives more accurate results.
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Figure 5: Convergence rate for the 1D Poisson equation using Sh and Ph for different degrees p.

Remark. The bandwidth of the resulting stiffness matrix also depends on the discretization
method. WICSP, Sablonnière’s method and Galerkin projection gives bandwidth 2p + 1, while
standard collocation leads to matrices with bandwidth p+ 1.
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4. Tensor-product spline discretization

We test our method performing different experiments on the domain Ω represented in Figure 6.
The geometry is a quarter of circular ring represented in terms of NURBS. We have carried out
the entire implementation in C++ with the use of the G+Smo library [28]. The experiments are
run in a Linux workstation equipped with an Intel Xeon W3680 CPU, 3.33 GHz with 24 GB of
memory.

Figure 6: Domain Ω used for the numerical experiments.

4.1. Computational results

Convergence and approximation power. First, we analyze the approximation power when tensor-
product splines are used. We verify the convergence behaviour of our method solving the Poisson
equation on the domain Ω with known exact solution

u(x, y) = sin(2πx) sin(2πy) (2)

and with source function f(x, y) = 8π2 sin(2πx) sin(2πy) computed accordingly. We impose the
Dirichlet boundary conditions by restricting the exact solution to the boundary curves of Ω.

We want to verify the influence of the choice of the collocation points on the approximation
power. We investigate the two discussed choices of point grids. The first one consists in the regular
grid of points obtained by one round of dyadic subdivision, as already mentioned the Greville points
form a subset of our grid. The second grid is constructed choosing the superconvergent (SC) points
with respect to the degree of the basis.

Moreover, we analyze the behaviour with respect to the degree p of the basis, namely when
B-splines of degree even or odd are used. The obtained convergence rate is reported in Figure 7
and 8 for degree odd and even respectively.

We obtain a different behaviour when discretizations of even or odd degree are considered.

• The use of the dyadic point grid leads to a convergence rate of order p − 1, both for the
L2 norm and H1 semi-norm of the error if p is odd. However, the rate of convergence is
always equal to p for even degree. This matches the known results for Greville point-based
collocation [3].

• The use of superconvergent points gives better results. We observe a convergence rate of
order p + 1 for the L2 norm and p for the H1 semi-norm of the error if p is odd. For even
degree p, the grid of superconvergent points is equal to the dyadic grid, and we already
noted that the rate of convergence is equal to p. Again, this is in agreement with the results
presented in [1] and [30].

The results are summarized in Table 2.
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Figure 7: Convergence rate for odd degrees, both the for the dyadic grid and the grid of superconvergent (SC)
points.
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Figure 8: Convergence rate for even degrees, where the dyadic grid coincides with the grid of superconvergent
points.

Comparison with Galerkin projection. We have verified that Galerkin-based isogeometric analysis
and our weighted collocation approach on the superconvergent grid of points lead to the same
approximation power for odd degree p. We now compare the accuracy of the two approaches.

Figure 9 reports the numerical errors obtained solving the Poisson equation with solution (2)
on Ω. We observe that the Galerkin approach always leads to a higher accuracy, compared with
our method. This is in line with the results presented in the literature about classical isogeometric
collocation.

Condition number. We investigate numerically the condition number κ(S) of the stiffness matrix
for our method when the dyadic grid of collocation points is employed. We also compare the
results with the ones obtained applying Greville collocation and Galerkin discretization. Again,
we consider as a model problem the Poisson equation defined on Ω.

First, we analyze the growth of the condition number for WICSP with respect to h-refinement.
In order to do so, we repeatedly perform uniform refinement and compute κ(S) for different degrees

Table 2: Approximation power

Point grid SC. point grid

Odd p Even p Odd p Even p

L2 p− 1 p p + 1 p
H1 p− 1 p p p
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Figure 9: Numerical errors for isogeometric discretization of odd degree using WICSP and the Galerkin method.

p. The obtained results are presented in Figure 10 (left). We always observe experimentally a
quadratic growth of the condition number for each degree p of the discretization.

Second, we investigate the dependence of κ(S) under p-refinement and perform a comparison
with the ones obtained using Greville collocation and Galerkin discretization. Therefore, we fix h
and compute the condition number of the stiffness matrices arising from the application of WICSP,
Greville collocation (C) and Galerkin discretization (G) for varying degrees p. The corresponding
results are reported in Figure 10 (right). We observe that WICSP and Greville collocation appear
to give rise to better conditioning of the resulting system matrices for high degree p, compared
to the Galerkin discretization. Furthermore, WICSP always results in slightly higher condition
numbers, compared to Greville collocation.
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Figure 10: Left: Condition number of the stiffness matrix created by WICSP for various values of h for different
degrees p. Right: Condition number for several values of p for WICSP, collocation at Greville points (C) and for
Galerkin-based discretization (G).

4.2. Complexity of the matrix assembly

We now analyze the costs of the matrix assembly process of our approach. First, we discuss
the case of dimension d = 2. We compute the elements of the system matrix

Sij =

∫
Ω

Dβj(x)
∑
k∈Ki

wikδ(x− ξk)dΩ =
∑
k∈Ki

wikDβj(ξk)

where the operator D takes the form D =
∑

t∈T ΦtDt, see Eq. (1). The coefficients wik are
given by the spline projector (i.e., by the row of the matrix (ATA)−1AT that corresponds to the
coefficient of βi). They have a tensor-product structure wik = w1

i1k1
w2

i2k2
.
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More precisely, we assemble the matrix

Sij =
∑
t∈T

∑
k∈Ki

wikΦt(ξk)Dtβj(ξk) .

The assembly procedure can be performed efficiently by exploiting the tensor-product structure
of the discretization. We invoke a sum factorization technique that was already adopted in [2], [6]
and [32].

Focusing on the bivariate case, we introduce the multi-index notation i = (i1i2), j = (j1j2),
k = (k1k2) and consider the separate components of the operatorDt = D1

tD
2
t in the two parametric

directions and rewrite the matrix element as

S(i1i2)(j1j2) =
∑
t∈T

( ∑
k1∈K1

i1

D1
t β

1
j1(ξ1

k1
) w1

i1k1

∑
k2∈K2

i2

D2
t β

2
j2(ξ2

k2
) w2

i2k2
Φt(ξ

1
k1
, ξ2

k2
)

︸ ︷︷ ︸
Xt,i1i2j2k1

)
.

We analyze the complexity, focusing on a single instance of t:

• First, we focus on the evaluation of Xt,i1i2j2k1 . This calculation requires to loop through all
the O(n1n2) = O(n) possible indices i1 and i2 of basis functions. For each pair of indices,
we have to consider 2p+ 1 overlapping basis functions with index j2, and O(p2) collocation
nodes with indices k1 ∈ K1

i1
and k2 ∈ K2

i2
. Since the computational effort for each such

6-tuple of indices is constant, we arrive at total costs of O(np3) flops.

• We are now ready to evaluate the sum with respect to k1, which requires the execution of two
loops with O(n1n2) index pairs (i1, i2). Similar to the inner sum, we consider the overlapping
basis functions with indices j1 and j2 and the evaluation nodes in the first direction with
indices k1. All these calculations lead to costs of O(p3) flops for each pair (i1, i2).

• Finally we note the size of |T | = O(1) is discretization-independent, thus we conclude that
the overall complexity to assemble the resulting system matrix results equal to O(np3).

An analogous analysis can be carried out in higher dimensions, again exploiting the tensor-
product structure of the discretization. In general, the computational costs are equal to O(npd+1)
flops. We note that the costs of our approach are in line with the most advanced techniques
for matrix assembly in Galerkin-based isogeometric analysis with tensor-product splines [8, 32].
However, the resulting costs are higher than the one of the standard collocation-based approach.
This is due to the fact that the spline projector approach requires more collocation nodes compared
to the standard isogeometric collocation method.

4.3. Matrix-free application

The approximate numerical solution of PDEs is typically obtained solving large and sparse
linear systems of equations. Iterative solvers are preferred over more memory-consuming direct
methods. Moreover, it has been observed that these methods only require the calculation of
matrix-vector products without the need of explicitly storing the system matrix that arises from
the discretization of a PDE. This has been recently exploited in [8] to define efficient isogeometric
matrix-free solvers. Here we explore the applicability of our collocation method in a matrix-free
framework.

We analyze the computational costs of the matrix-vector multiplication

vi = (Siju)i =
∑
j

Sijuj =
∑
j

(∑
t∈T

∑
k∈Ki

wikΦt(ξk)Dtβj(ξk)

)
uj .
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In order to make use of the sum-factorization approach, we rewrite the sum as

v(i1i2) =
∑

k1∈K1
i1

w1
i1k1

∑
k2∈K2

i2

w2
i2k2

∑
t∈T

Φt(ξ
1
k1
, ξ2

k2
)
∑
j1

D1
t β

1
j1(ξ1

k1
)
∑
j2

D2
t β

2
j2(ξ2

k2
)u(j1j2)︸ ︷︷ ︸

xt,k2j1︸ ︷︷ ︸
yt,k1k2︸ ︷︷ ︸

zk1i2

.

The calculation is performed recursively:

• The evaluation of the first (innermost) term xt,k2j1 requires to loop through the O(n1n2) =
O(n) indices k2 and j1. The loop with index j2 needs to visit only O(p) basis functions. We
already noted that |T | = O(1). Therefore, the costs to compute the first term are equal to
O(np).

• The evaluation of the second term yt,k1k2 requires to visit O(n1n2) = O(n) indices k1 and
k2 and O(p) basis functions with index j1. This results in total costs of O(np) flops.

• The third term zk1i2 is computed by looping through all the O(n1n2) indices k1 and k2 and
O(p) overlapping basis functions i2. Again, the costs are equal to O(np).

• Finally, we compute vi1i2 with O(np) operations via two loops through O(n1n2) instances
of the indices i1 and i2. For each pair, we have to consider only O(p) collocation nodes k1,
which leads to the total complexity of this step.

While we analyzed the behaviour of the matrix-vector product in the bivariate case, the anal-
ysis carries over to higher dimensions. We conclude that the computational complexity of our
method in the matrix-free context is equal to O(np), thus it is dimension-independent. Similar
results are available for standard isogeometric collocation and for Galerkin projection via weighted
quadrature [36].

4.4. Summary and comparison with other methods

We summarize three main observations regarding the spline projector-based weighted colloca-
tion for tensor-product splines, cf. Figure 11:

• It gives the optimal rate of convergence for odd degrees (red disk), similar to standard
Galerkin methods, least-squares and clustered collocation, and Galerkin via weighted quadra-
ture.

• It gives the dimension-independent complexity O(np) for the matrix-free application like
Greville collocation, Galerkin via weighted quadrature, and clustered collocation.

• It can be realized without using the least-squares approach (that would lead to higher con-
dition numbers).

Among the six approaches that are identified in the figure, our method belongs to the core group
that possess these three advantageous properties.

5. Adaptive THB-spline discretization

While it also performs well in the tensor-product case, the true advantage of our approach
relies in its application to adaptive discretization strategies with THB-splines. We will show
that the spline projector-based collocation admits a natural generalization to the case of THB-
splines. Moreover, we show that the computational complexity of the assembly compares well
with Galerkin-based discretizations.
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A Weighted quadrature [8]

B Clustered collocation [30]

C Spline projector-based weighted collocation

D Galerkin

E Greville collocation [3]

F Least squares collocation [1]

Figure 11: Properties of the different methods.

5.1. Computational results

Convergence and approximation power. We verify the suitability of our method when adaptive
refinement with THB-splines is performed. More precisely, we will show that the WICSP method
is directly applicable to THB-spline discretizations and it preserves the advantages of using the
adaptive refinement strategy.

As before we consider the Poisson equation on the domain Ω (see again Figure 6), but this
time with the known exact solution

u(x, y) = e−103((x−1)2+(y−1)2) . (3)

The solution exhibits a sharp exponential peak centered at (1, 1). This makes it an appropriate
test case to evaluate the performance of the adaptive refinement strategy.

We use basis functions which are at least C1 continuous. Thus we can adopt the a posteriori
error estimate

η2
E = h2

E ||f −Duh||2L2(E)

defined on an active cell (or element) E ⊂ Ω, where hk denotes the diameter of the selected
element E. This error estimate, although based on the weak form of the problem, performed well
in all our numerical experiments. The study of error estimators for isogeometric collocation is still
a topic of ongoing research, see e.g. [22].

We mark the active cell E for refinement if ηE exceeds a suitable threshold Θ

ηE ≥ Θ

There are several strategies to select the threshold Θ. We employ the “relative threshold” approach
discussed in [14]. We control the percentage of active cells that will be marked in each refinement
step by choosing Θ such that

|{E : ηE > Θ}| ≈ (1− ψ)|{E}|

The factor 1 − ψ identifies the percentage of active cells that will be marked for refinement. In
our experiments we set ψ = 0.85.

Finally, we refine by adopting a suitable mesh grading strategy, in order to ensure the admis-
sibility of the resulting mesh.

Figure 12 reports the L2 and H1 norms of the error obtained by using WICSP for THB-
and tensor-product splines of degree p = 3 and p = 4, where we employed the super-convergent
collocation nodes in the latter case. As to be expected, we always observe a superior performance
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of the adaptive refinement strategy compared to the uniform refinement case. In fact, we always
obtain a comparable accuracy with a significant lower number of degrees of freedom. This is due
to the fact that in the adaptive refinement case the refinement is correctly concentrated around
the location of the peak of the exact solution u(x, y) where the error results larger. The use
of tensor-product refinement leads to over-refinement in areas of the domain where the error is
already negligible. An example of the obtained solution and the corresponding hierarchical mesh
is depicted in Figure 13.
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Figure 12: L2 and H1 errors of WICSP for THB- and tensor-product splines for p = 3 (top row) and p = 4 (bottom
row).

Figure 13: Mesh obtained via adaptive refinement (left) and corresponding solution uh (right) for p = 3.

Comparison with Galerkin projection. In order to compare with the Galerkin discretization, we
again consider the Poisson equation on Ω with the known exact solution (3). Figure 14 reports the
results obtained when using tensor-product splines and THB-splines. We note again that the use
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of the Galerkin approach always leads to a better accuracy (with higher computational costs for
the matrix assembly) if compared with our weighted collocation approach. However, both THB-
spline based methods (WICSP and Galerkin) perform significantly better than the corresponding
tensor-product discretizations, due to the near-singular nature of the exact solution.
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Figure 14: L2 and H1 errors of WICSP and Galerkin discretization for THB- and tensor-product splines for p = 3
(top row) and p = 4 (bottom row).

5.2. Complexity of the matrix assembly

We now analyze the costs of the matrix assembly process of our approach. We compare it with
the use of Gaussian quadrature in the context of Galerkin projection, since this is currently the
only viable approach to isogeometric analysis based on THB-splines.

We compute the elements of the system matrix

Sij =

∫
Ω

Dβj(x)
∑
k∈Ki

wikδ(x− ξk)dΩ =
∑
k∈Ki

wikDβj(ξk)

where the operator D again takes the form D =
∑

t∈T ΦtDt, see Eq. (1). The coefficients wik

are given by the spline projector (i.e., by the row of the matrix (ATA)−1AT that corresponds to
the coefficient of βi). Neither these coefficients nor the basis functions possess a tensor-product
structure, hence it is impossible to employ sum factorization. We perform the assembly via the
straightforward Algorithm 1.

First, the matrix assembly routine requires a loop through all the O(n) basis functions. Second,
we visit all the O(pd) overlapping basis functions. Finally, we have to consider O(pd) collocation
nodes in the support intersection. We conclude that the computational complexity equals O(np2d).

The use of Gaussian quadrature in the case of Galerkin-based THB-spline discretizations entails
computational costs of O(np3d) floating point operations. We therefore obtain a considerable
advantage in terms of calculation time as p increases. This is due to the fact that our spline
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Algorithm 1: Matrix assembly with THB-splines

// loop through basis functions

for i← 1 to n do
// loop through basis functions that overlap βi
for j : suppβj ∩ suppβi 6= ∅ do

// loop through collocation nodes in suppβj ∩ suppβi
for k : ξk ∈ suppβj ∩ suppβi do

// compute matrix entry

Sij = Sij + wik

∑
t∈T Φt(ξk)Dtβj(ξk)

end

end

end

projector-based approach utilizes a suitable point grid (with a p-independent number of evaluation
nodes per active cell) as described in Section 3.

In order to verify experimentally the predicted computational complexity, we adopt the bench-
mark proposed in [33]. For each degree p we generate a hierarchical mesh consisting of four levels
as follows: We initialize a uniform tensor-product mesh of 4p×4p active cells, which is then refined
repeatedly by using the 2p×2p active cells of the bottom-left corner to obtain the next finer level.
In this way we always obtain an admissible mesh. The meshes obtained for p = 3 and p = 6 are
depicted in Figure 15.

Figure 15: Mesh for p = 3 (left) and for p = 6 (right).

First, we verify the linear growth of the computational cost with respect to the number of de-
grees of freedom. Every active cell of the meshes obtained by the previous procedure is repeatedly
refined (4 times in total) via dyadic subdivision in order to obtain a progressively increasing num-
ber of degrees of freedom. Equivalently, this can be seen as increasing the levels of all subdomains
by 1, 2, 3, 4. We then run our code and measure the time needed to assemble the resulting system
matrix varying n for different values of p. The obtained results are reported in Figure 16 (left).
We observe a linear dependence of the assembly time with respect to the total number of degrees
of freedom. This is coherent with the analysis.

Next, we test the behaviour of the assembly time against the degree p and perform a comparison
with the one obtained via Gauss quadrature, which is implemented in the G+Smo library. For the
latter, we use (p+1)d nodes per active cell. This choice has been theoretically proven to guarantee
optimal approximation power and it is typically adopted in matrix assembly routines. We consider
again the meshes generated as described above and measure the assembly time for various values
of the degree p. Figure 16 (right) presents the obtained experimental results.

We observe that the rate of growth of the computational time tends to 4 = 2d for our approach,
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Figure 16: Matrix assembly time with respect to n for different degrees p (left) and matrix assembly time with
respect to p (right).

while Gauss quadrature gives 6 = 3d as expected. However, we also note that our method is slightly
slower than Gauss quadrature for low degrees. We attribute this fact to the extremely optimized
implementation provided within the G+Smo library.

In order to further understand this discrepancy, we count the total number of visits of the
evaluation nodes for WICSP and for Gauss quadrature that are needed to assemble the system
matrix. More precisely, we count these visits for various values of the degree p, and for the sequence
of multi-level-meshes generated by the above procedure, see Figure 15, and for THB meshes with
only a single level (which are indeed tensor-product meshes). For simplicity, we did not employ the
reduced point grid in the case of WICSP, even though this would have reduced the total number
of visits.

The obtained results are reported in Figure 17. Two observations are in order:
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Figure 17: Number of visits of the evaluation nodes during the matrix assembly procedure for THB-splines on
multi-level (ML) and single-level (SL) meshes.

• We obtain a similar number of visits of the evaluation nodes already for degree p = 3 when
THB-splines are used.

• The advantage of using the WICSP method becomes more pronounced for meshes that are
closer to the tensor-product case. This is due to the fact that number of evaluation nodes
for WICSP attains its minimum (i.e. (2p+ 3)d) in this situation.

We conclude that the WICSP method possesses computational advantages with respect to matrix
assembly already for relatively low degrees.
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5.3. Matrix-free application

We discuss the design of efficient matrix-free solvers for isogeometric analysis with THB-splines
in the context of the WICSP method. As already mentioned, sum-factorization approaches are
not viable when THB-splines are used and therefore a different assembly algorithm is required to
deal with the lack of tensor-product structure.

In order to define a matrix-free solver, we need to compute the matrix-vector product

vi = (Siju)i =
∑
j

(∑
t∈T

∑
k∈Ki

wikΦt(ξk)Dtβj(ξk)

)
uj =

∑
k∈Ki

wik

∑
t∈T

∑
j

Φt(ξk)Dtβj(ξk)uj︸ ︷︷ ︸
vik

The algorithm used to perform the multiplication is presented in Algorithm 2.

Algorithm 2: Evaluating a matrix-vector product with THB-splines

// precomputation of point values

// loop through collocation nodes

for k ← 1 to |K| do
// loop through basis functions active on ξk
for j : βj(ξk) 6= 0 do

// compute point value

vik = vik +
∑

t∈T Φt(ξk)Dtβj(ξk)uj
end

end
// compute the vector v
// loop through basis functions

for i← 1 to n do
// loop through collocation nodes in suppβi
for k : ξk ∈ suppβi do

// compute vector entry

vi = vi + wikvik
end

end

We analyze the computational costs and compare them with Gauss quadrature:

• A preprocessing step is needed to store the relevant quantities later used to compute the
vector components. This requires to first loop through all the collocation nodes. We have
already seen how our spline projector approach permits to define a degree independent set
of O(n) nodes. We then need to consider all the basis functions active on the selected node.
The mesh grading assumption allows to conclude that only O(pd) basis functions are active
on each point. The total cost of the preprocessing step is therefore equal to O(npd).

• After these preparations, we are ready to perform the matrix-vector product. In order to
do so, we need to loop through all the O(n) basis functions and visit the O(pd) collocation
nodes in the support of the selected basis function. We conclude that the total computational
cost of the matrix-free approach via WICSP is equal to O(npd).

• The use of Gaussian quadrature in a matrix-free framework with THB-splines would lead to
a higher cost of O(np2d) floating point operations, due to the fact that the total number of
Gauss nodes depends on the degree of the discretization.

A detailed analysis reveals that the break-even point for WICSP vs. Gauss quadrature is attained
for similar degrees as in the matrix assembly case, but the speedup factor of WICSP grows now
much faster with p.
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5.4. Summary

We have shown that the WICSP is particularly well suited for performing adaptive refinement
using THB-splines:

• It supports the use of adaptive spline refinement, leading to better results with fewer degrees
of freedom compared to the case of uniform refinement.

• It is beneficial for the fast assembly of the matrices arising in isogeometric discretizations.
In this case the use of Galerkin based isogeometric analysis relies exclusively on Gauss
quadrature routines to assemble the resulting system matrix. This typically leads to a high
computational cost. On the contrary, our approach exhibits a considerably lower complexity
equal to O(np2d). We have also performed different experiments to validate numerically how
these advantages apply to discretizations with relatively low degrees.

• Finally, we have shown that our method gives rise to fast matrix-free solvers for THB-splines
with computational complexity equal to O(npd).

6. Conclusion

We have presented a novel weighted isogeometric collocation method based on spline projectors
suitable for both tensor-product and THB-splines discretizations. In particular, we have observed
how the resulting method gives rise to efficient solvers for isogeometric analysis and carried out
numerous experiments to characterize its properties in terms of accuracy and complexity.

Regarding potential future work, we identify two areas of research that deserve further atten-
tion.

First, we plan to generalize our implementation to deal with more complex problems. We
intend to extend our method to 3D, possibly multi-patch, geometries which are typically of interest
in numerical simulation. The use of Neumann boundary conditions needs to be investigated as
well. The case of knot vectors with internal knots that possess a multiplicity higher than one
is not covered by the paper and may be a topic for future research. In fact, we expect that
the advantages of our method we have observed in this paper carry over and become even more
pronounced for higher dimensions. Moreover, we want to apply our approach to solve other PDEs,
such as elasticity problems or other higher order equations. In both cases, isogeometric collocation
has already been identified as a competitive approach [26, 34]. Finally, we intend to improve our
code by exploring the possibility of a parallel implementation, which would further decrease the
computing times.

Second, it is known that the theoretical analysis of convergence and stability properties of collo-
cation methods is still an open problem, and this has not been addressed in this work. Additional
research is required to fully understand these properties and confirm the observed experimental
evidence. The equivalence of WICSP and dual Galerkin on the discretization space might be
helpful in this respect.
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Appendix: (Truncated) Hierarchical B-splines

The definition of hierarchical B-splines on a bounded domain Ω0 ⊂ Rd is based on a finite
sequence of d-variate tensor product spline spaces V `, ` = 0, . . . , N , which are assumed to be
nested, V ` ⊂ V `+1, where the upper index ` specifies the level. The spline space of level ` is
spanned by uniform tensor-product B-splines (TPB-splines) of degree p with knots 2−`Z in all
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variables. The polynomial pieces of spline functions of level ` are obtained by considering their
restrictions to the subsets of 2−`(Zd + [0, 1]d), which we call cells of level `.

Kraft [25] proposed to generate a multilevel spline basis by applying a selection procedure to
the TPB-splines of all levels. His approach relies on a sequence of subdomains Ω` ⊂ Rd, which are
assumed to be inversely nested, Ω` ⊇ Ω`+1. We consider only level ` subdomains that are unions
of finitely many (possibly overlapping) square blocks consisting of dp+1

2 e cells of level ` − 1 per
variable (also for ` = 0). Cells of level ` are said to be active if they are contained in Ω` but not
in Ω`+1. The union of active cells of level ` or higher covers the entire subdomain of level `. The
mesh is formed by all the active cells.

The basis of hierarchical B-splines (HB-splines) is obtained by collecting the TPB-splines of
all levels `, whose support is contained in Ω` and possesses at least one active cell of level `. In
addition, we assume mesh grading by requiring that the support of each level ` HB-spline contains
cells of levels ` and `+ 1 (but not higher) only.

HB-splines form a non-negative basis of the hierarchical spline space, which is spanned by them.
The partition of unity is restored by the truncation mechanism [15]. Under the above assumption
regarding mesh grading, one may find the truncated hierarchical B-spline (THB-spline) from a
level ` HB-spline – which is called its mother – by considering its representation as the sum of
(p+2)d suitably scaled TP-splines of level `+1, keeping only the contributions that take non-zero
values on at least one active cell of level `. The resulting THB-splines form another basis, which
is a non-negative partition of unity, of the hierarchical spline space.
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