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Abstract We consider partitions of the d-dimensional unit cube into patches
with an associated tensor-product spline space for each of them. The spline
spaces possess the same multi-degree p = (p1, . . . , pd) and the same maxi-
mum smoothness Cp−1, but the choice of the knots is very flexible. Under cer-
tain assumptions, we show how to construct Decoupled Patchwork B-splines
(DPB-splines) that span the corresponding patchwork spline space P. More
precisely, we generate a basis for the space P formed by all Cp−1 smooth func-
tions that admit patch-wise representations in the associated spline spaces.
Based on the framework of decoupled tensor-product B-splines [31, 32], we
obtain a basis that is algebraically complete, forms a convex partition of unity,
and preserves the coefficients of the local B-spline representations. Further-
more, we present an adaptive refinement algorithm for surface approximation
generating partitions that satisfy the required assumptions and hence can be
equipped with a DPB-spline basis.

1 Introduction

Tensor-product B-splines, which are the standard for describing free-form
geometries in Computer-Aided Design [14] possess a fundamental limitation:
Their tensor-product structure does not support local refinement. Therefore,
adaptive spline constructions have been developed in order to overcome this
restriction and provide more flexibility in design and analysis. Forsey and
Bartels were the first to introduce hierarchical B-spline refinement [15]. Their
hierarchical construction was extended by Kraft, who established a selection
mechanism that defines a basis for the hierarchical spline space [27].
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Institute of Applied Geometry, Johannes Kepler University, Linz, e-mail:
bert.juettler@jku.at

1



2 Nora Engleitner and Bert Jüttler

T-splines [35] have been developed as an adaptive construction on meshes
with T-joints. In general these splines are not linearly independent and there-
fore, analysis-suitable (AS) T-splines and AS++ T-splines have been intro-
duced and discussed in [8, 30, 33, 41]. Moreover, polynomial splines over
hierarchical T-meshes [25, 29] and locally refined B-splines [9] have been
established. Recently, the latter construction has been generalized to LR T-
splines [7], where local refinement is performed on an initial T-mesh instead
of a tensor-product mesh.

In order to restore the partition of unity property for hierarchical splines,
a truncation mechanism has been introduced in [18]. The resulting truncated
hierarchical B-splines (THB-splines) possess good mathematical properties,
see [19, 21, 32, 36, 38] for a detailed analysis of stability, completeness and
approximation power. Applications of (T)HB-splines include surface approx-
imation [4, 22, 26] and isogeometric analysis [1, 2, 3, 5, 28, 34]. Aspects of
the implementation have been discussed in [16, 17]. Moreover, the hierarchi-
cal principle has been applied to other constructions, such as Powell-Sabin
splines [37], triangular splines [40], box splines [20, 23, 42], B-splines on tri-
angulations [24], T-splines [6, 13], and subdivision functions [39, 43].

While THB-splines possess good mathematical properties, they are not as
flexible as other constructions like T-splines or LR B-splines. Hierarchical B-
splines rely on a sequence of nested spline spaces and therefore, the choice of
possible refinement strategies is limited. Recently, we generalized hierarchical
splines to Patchwork B-splines (PB-splines), which are defined on a sequence
of partially nested spline spaces and enable the use of independent refinement
strategies in different parts of the domain [10, 12]. An adapted version of
Kraft’s selection mechanism generates a basis for the patchwork spline space
under certain assumptions. Similar to the hierarchical splines, a truncation
mechanism has been established in order to obtain the basis of truncated
PB-splines (TPB-splines) [10] that forms a non-negative partition of unity.
Applications of the PB-splines in surface approximation and to lofting B-
spline curves [11] have shown the potential of this new construction.

Although the (T)PB-splines provide increased flexibility, there are still
certain limitations on the available refinement strategies. For instance, a re-
gion that separates two coarser spline spaces is required to have a certain
degree-dependent width, see Fig. 1, bottom row. Additionally, the spaces
that are present in a degree-dependent neighborhood of any cell need to be
(upwards or downwards) compatible with the chosen space for this cell if
TPB-splines are to be generated. Consequently, a region that separates two
finer (but non-nested) refinement regions is also required to possess a certain
degree-dependent width, see Fig. 1, top row. For instance, also the PB-spline
hierarchies considered in [11] for solving the lofting problem are not suitable
for TPB-splines.

Finally we note that (T)PB-splines are not algebraically complete in gen-
eral. This is similar to THB-splines, see [31], where the use of decoupled
B-splines has led to significant improvements in this regard. We build on this
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Fig. 1: Invalid (left) and valid (right) meshes for bicubic PB-splines (bottom)
and TPB-splines (top).

idea to define the new framework of Decoupled Patchwork B-splines (DPB-
splines). More precisely, we define local basis functions, called patch B-splines,
that are obtained by restricting and decoupling tensor-product B-splines.

The remainder of this paper is organized as follows: Section 2 introduces
the general framework consisting of patches, the local spline spaces and a
patchwork spline space. Moreover, we observe that the patchwork spline space
is equal to the full spline space, i.e., a basis for this space is algebraically
complete. A truncation and selection mechanism are then used to define the
DPB-splines in Section 3. We identify assumptions that are needed in order
to guarantee a certain order of smoothness of the basis functions and for
characterizing the obtained spline space. These assumptions affect only a
patch and its neighbors. The mathematical properties of the DPB-splines are
analyzed in Section 4. In particular, the basis functions possess continuous
values and derivatives up to a certain order, they span the patchwork spline
space and form a convex partition of unity. Furthermore, we identify a simple
sufficient condition for a certain class of patches that guarantees that the
assumptions are satisfied. Section 5 provides several examples that compare
the flexibility of DPB-splines with TPB- and THB-splines. We introduce an
improved refinement algorithm for least-squares fitting in Section 7, which
generates hierarchies that can be equipped with a Decoupled Patchwork and
a (truncated) Patchwork B-spline basis. Two examples are used to illustrate
the advantages of this new strategy. Finally, we conclude the paper.
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2 The patchwork hierarchy

For constructing DPB-splines we generate a hierarchy consisting of patches
and corresponding spaces, which are not necessarily nested. Furthermore, the
collection of patches and spline spaces allows the definition of a patchwork
spline space.

2.1 Patches

We consider a finite sequence of patches {π`}`=1,...,N , which are closed subsets
of the d–dimensional unit cube [0, 1]d. The upper index ` will be called the
level. The patches possess a mutually disjoint interior, int(π`) ∩ int(πk) = ∅,
for k 6= `, and their union defines the domain,

Ω =

N⋃
`=1

π`.

Not only the entire domain but certain subsets thereof will be used in the re-
mainder of the paper. An index set D ⊆ {1, . . . , N} generates the subdomain,

∆D =
⋃
`∈D

π` ⊆ Ω. (1)

In particular, we define ∆D,≥` = ∆D ∩ ∆≥`, with the index set ≥` =
{`, . . . , N}, as the subdomain formed by all patches in ∆D with level greater
or equal to `. Furthermore, we introduce the neighboring index set

N ` = {k : k > ` and πk ∩ π` 6= ∅},

that comprises the levels k > ` of higher level neighboring patches of π`. The
index set of higher level neighboring patches in ∆D will be denoted as

N `
D = N ` ∩ D.

The two index sets N ` and N `
D define the subdomains ∆N ` and ∆N `D , re-

spectively.

Example 1 We consider the subdivision of the unit square into six patches,
π1, . . . , π6. Note that the patches might possess several connected compo-
nents, as it is the case for patch π2 in this example. Fig. 2 depicts several
subdomains of Ω. The subdomain ∆≥3 is formed by the patches π3, . . . , π6

as illustrated in Fig. 2a. Consider D = {2, 4, 5}, thus ∆D,≥3 = π4 ∪ π5, see
Fig. 2b. The higher level neighbors of π3 define the index set N 3 = {4, 6}, see
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Fig. 2c. The intersection of ∆N 3 and ∆D gives the subdomain ∆N 3
D

, which

consists of π4, see Fig. 2d. ♦
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Fig. 2: Example 1 – Various subdomains for D = {2, 4, 5}.

Except for trivial situations, each patch shares parts of its boundary ∂π`

with patches of a different level. The part of the boundary that intersects
with patches of a higher level will be called the constraining boundary,

Γ ` = ∆≥`+1 ∩ π`.

In addition we define the constraining boundary

Γ `D = Γ ` ∩∆D = ∆D,≥`+1 ∩ π`,

with respect to the subdomain ∆D.

Example 2 We re-visit the previous example. Fig. 3 shows the constraining
boundaries Γ 4, Γ 4

D, Γ 4
N 3 and Γ 4

N 3
D

= ∅. ♦
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Fig. 3: Example 2 – Various constraining boundaries (shown in red).
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2.2 Spline spaces

For each level `, we choose a globally1 defined tensor-product spline basis B̂`

that consists of individual basis functions β̂` ∈ B̂`, spanning a certain spline
space V̂`. Note that we consider sets B̂` of basis functions and use the symbol
β̂` to represent their elements. The upper index indicates the level but does
not identify individual basis functions.

More precisely, the basis functions are tensor-product B-splines of degree
p = (p1, . . . , pd) defined on d open knot vectors with (pi + 1)-fold boundary
knots 0 and 1 for i = 1, . . . , d. All inner knots possess multiplicity 1. Hence,
we obtain B-splines of maximal smoothness, Cs(Ω), with s = p−1. In other
words, the basis functions possess continuous values and partial derivatives
up to order pi−1 in each variable xi separately. The supports2 of the functions
β̂` are axis-aligned open boxes in [0, 1]d.

In addition to the B-spline bases, which are independent of the patches
π`, we define local spline bases B` on π` that consist of patch B-splines β`

and span the spaces V`. The basis functions are constructed by decoupling
the restricted function β̂`|π` , see [31]. More precisely, for each connected

component φ of suppβ̂` ∩ π` we obtain a basis function

β` =

{
β̂` on φ

0 on π` \ φ.
(2)

The knot hyperplanes of the space V` divide the patch π` into cells z ∈ Z`,
where Z` denotes the set of all cells of level `.

For later reference we note that

suppβk ∩ Γ ` = suppβk ∩ Γ `D, (3)

for βk ∈ Bk and any index set D with k ∈ D and ` < k.

Example 3 We consider three different biquadratic tensor-product B-splines
β̂` and discuss the resulting patch B-splines with respect to a U-shaped patch
π`, represented as gray area in Fig. 4. The knot vectors of level ` define the
grid that is illustrated in the three pictures. The supports of the B-splines are
depicted as blue squares, and the blue circles indicate their Greville points.
Depending on the location of the support with respect to the patch we obtain
zero, one or two patch B-splines. ♦

The functions in B` possess good mathematical properties on π`: They
are linearly independent, non-negative, form a partition of unity and have
continuous values and partial derivatives up to order pi−1 in each variable xi.

1 i.e., with domain [0, 1]d.
2 Note that we use the set-theoretic definition of the support, i.e., for a function
f : Ω 7→ Rd the support of f is defined as suppf = {x ∈ Ω : f(x) 6= 0}.
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(a) (b) (c)

Fig. 4: Example 3 – Restriction of three tensor-product B-splines to a U-
shaped patch.

2.3 The patchwork spline space

We conclude this section by introducing the patchwork spline space. On a
general subdomain ∆D we define

PD = {f ∈ Cs(∆D) : f |πk ∈ Vk, for k ∈ D}.

Note that the tensor-product polynomials of degree p restricted to the sub-
domain ∆D are contained in the patchwork spline space PD. With PD,≥` we
denote the patchwork spline space on the subdomain ∆D,≥`, while P = P≥1
is the patchwork spline space on the entire domain.

In addition to the patchwork spline space PD we consider the full spline
space

FD = {f ∈ Cs(∆D) : f |z ∈ Πp ∀z ∈ Z`, ` ∈ D},

where Πp is the space of tensor-product polynomials of degree p. We obtain
the following result:

Corollary 1 The patchwork spline space PD is equivalent to the full spline
space FD.

Proof Theorem 2.12. of [32] implies that PD = FD. �

Thus, a basis that spans the patchwork spline spaces is algebraically com-
plete.

3 Decoupled Patchwork B-splines

We define a basis for the patchwork spline space by suitably adapting Kraft’s
selection mechanism [27] to the patch structure.
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3.1 Preliminaries

Our construction is based on the natural assumption that the spline spaces
associated with neighboring patches are nested.

Assumption NNC – Nested Neighbor Condition

Any two globally defined spline spaces satisfy V̂` ⊆ V̂k if k ∈ N `.

We introduce the extension operator, E : B` 7→ B̂`, that transforms a
patch B-spline β` ∈ B` into the globally defined tensor-product B-spline
E(β`) = β̂` ∈ B̂` such that

β` = β̂`|suppβ` . (4)

The extension of a patch B-spline β` is always denoted by β̂` in the remainder
of this paper. Note that different patch B-splines β` and β′` with disjoint
supports possess the same extension β̂` = β̂′` if they are derived from the
same tensor-product B-spline. It follows that β̂`|π` ∈ V` since

β̂`|π` =
∑

β′`∈B`

β̂′`=β̂`

β′`.

The dual functionals that generate the coefficients of the local representation

f(x) =
∑
β`∈B`

λβ`(f)β`(x), for x ∈ π`,

of a function f ∈ V` will be denoted by λβ`(.). If the spaces spanned by a

pair of spline bases B̂` and B̂k are nested, i.e., V̂` ⊆ V̂k, for ` < k, then it
holds that β̂`|πk ∈ Vk and

λβk(β̂`) = λβ̂k(β̂`), (5)

where the values λβ̂k(β̂`) of the dual functionals are the coefficients obtained
by B-spline refinement.

3.2 Recursive selection

On the subdomain ∆D the Decoupled Patchwork B-splines PD are com-
puted recursively, starting at the highest level N and using the initialization
PN+1
D = ∅. Since the index set D does not necessarily contain all levels, we
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distinguish between two cases: When proceeding to the next lower level `,
the DPB-splines remain unchanged if ` 6∈ D. Otherwise, we select functions
of levels higher than ` that vanish on the constraining boundary,

S`+1
D = {β̃kD ∈ P `+1

D : β̃kD = 0 on Γ `D},

and apply truncation – indicated by the tilde operator – to the extensions of
the patch B-splines of level `,

T `D = {β̃`D : β` ∈ B`}.

The DPB-splines of level ` are then defined as the union of selected and
truncated patch B-splines,

P `D =

{
S`+1
D ∪ T `D if ` ∈ D
P `+1
D otherwise.

Since truncation is applied to the extension of the patch B-splines, it extends
them to the full domain. More precisely, the truncated patch B-splines β̃`D,
for ` ∈ D, are equal to the patch B-splines on π` and extend smoothly (as
we shall see later) into ∆D,≥` \ π`,

β̃`D =


β` on π`∑

β̃kD∈P
`+1
D

suppβ`∩ suppβk 6=∅

λβk(β̂`) β̃kD on ∆D,≥` \ π`

0 elsewhere.

(6)

π`

π`−1

π`+1

π`+2β̂`

β`
π`

π`−1

π`+1

π`+2

β̃`D

Fig. 5: Left: The supports of a patch B-spline β` (blue) and its extension β̂`

(light blue). Right: The support (blue) of the corresponding truncated patch
B-spline β̃`D. In the hatched area, it is equal to the patch B-spline and it is
smoothly extended in the non-hatched part.
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The support condition suppβ` ∩ suppβk 6= ∅ implies that the truncated
functions are linear combinations of non-selected basis functions of higher
levels on ∆D,≥` \ π`, i.e., of basis functions that do not vanish on the con-
straining boundary Γ `D, see Fig. 5. Note that the sum in (6) considers only
basis functions of patches πk, with k > `, that are neighbors of π`, i.e.,
k ∈ N ` ∩ D. According to NNC it follows that β̂`|πk ∈ Vk and therefore,

the coefficients λβk(β̂`) exist and are non-negative due to the properties of
B-spline refinement, see Eq. (6).

After completing the recursion we obtain PD = P 1
D and P = P≥1.

Lemma 1 The truncated patch B-splines β̃kD ∈ T kD satisfy

suppβ̃kD ⊆ suppβ̂k. (7)

Proof We prove this statement by induction starting from level n = maxD,
which is decreased until we arrive at n = 1. According to the piecewise
definition of β̃nD it follows immediately that

suppβ̃nD = suppβn ⊆ suppβ̂n.

Now we assume that (7) is satisfied for k ≥ k̄ ∈ D and it remains to be shown
that the statement holds as well for ` = max{m ∈ D : m < k̄}. We consider
a basis function β̃`D ∈ T `D. Note that

{β̃kD ∈ P
`+1
D : suppβk ∩ suppβ` 6= ∅}

⊆ {β̃kD ∈ T kD : ` < k ∈ D ∧ suppβk ∩ suppβ` 6= ∅}.

Thus, it follows from the definition of β̃`D and the induction hypothesis that

suppβ̃`D ⊆ suppβ` ∪ (
⋃

k∈D, k>`

⋃
βk∈Bk

suppβk∩suppβ` 6=∅
λ
βk

(β̂`)6=0

suppβ̂k), (8)

where the coefficients λβk(β̂`) exist according to NNC. For non-zero coeffi-

cients λβ̂k(β̂`) = λβk(β̂`) 6= 0 it holds that the supports of β̂k and β̂` are

nested, i.e., suppβ̂k ⊆ suppβ̂`. Therefore, the supports of the B-splines β̂k

in (8) are contained in the support of β̂`. Since also suppβ` ⊆ suppβ̂` we

conclude that suppβ̃`D ⊆ suppβ̂`. �

4 Properties of DPB-splines

Besides NNC, we impose two further assumptions in order to ensure good
mathematical properties of the DPB-splines.
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4.1 Assumptions and main result

First, we introduce a condition that concerns the intersection of a patch B-
spline with the constraining boundaries of lower level patches. To be more
precise, if a patch B-spline βn ∈ Bn does not vanish on a pair of constraining
boundaries Γ ` and Γ k, where ` < n and k < n, then a non-empty intersection
of the patch B-spline and the two constraining boundaries is assumed to exist,
see also Fig. 6.

Assumption IPC – Intermediate Patch Condition

If βn ∈ Bn satisfies

suppβn ∩ Γ ` 6= ∅, ` < n and suppβn ∩ Γ k 6= ∅, k < n,

then
suppβn ∩ Γ ` ∩ Γ k 6= ∅.

π`

πn

πk

(a)

π`

πn

πk

(b)

Fig. 6: Intersections (red) of a patch B-spline’s support (dark blue) with Γ `

and Γ k. The support of the associated extension β̂n is also shown (light blue).
IPC is violated in (a) and satisfied in (b).

The second assumption is needed to guarantee that the truncated basis
functions are Cs-smooth. We impose a condition on the intersection of a
patch B-spline with a lower level constraining boundary, see Fig. 7.

Assumption SIC – Support Intersection Condition

The support of a patch B-spline βn ∈ Bn intersected with a constraining
boundary Γ `,

suppβn ∩ Γ `,

where ` < n, is connected.
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π` πn

π`

(a)

π` πn

π`

(b)

Fig. 7: Intersections (red) of a patch B-spline’s support (dark blue) with a
constraining boundary Γ `, ` < n. SIC is violated in (a) and satisfied in (b).

The following theorem shows that the DPB-splines form a basis and char-
acterizes the space that is spanned by them.

Theorem 1 Assume NNC, IPC and SIC are satisfied. We consider DPB-
splines PD on any subdomain ∆D ⊆ Ω.

(i) The functions β̃`D ∈ PD possess continuous values and partial derivatives
up to order p− 1 in each variable separately.

(ii) The DPB-splines form a basis of the patchwork spline space PD.
(iii) The DPB-splines satisfy the coefficient preservation property, i.e., for

any function f ∈ PD it holds that

f =
∑

β̃kD∈PD

λβk(f) β̃kD, on ∆D. (9)

(iv) The DPB-spline functions are non-negative and form a partition of unity.

The proof of this theorem together with several technical lemmas is pre-
sented in the next section. Readers not interested in the details of the proof
may skip this section and continue directly with Section 5 on page 23.

4.2 Proof of Theorem 1

In the following we assume that NNC, IPC and SIC are always satisfied.
Eq. (3) implies that IPC and SIC are then also fulfilled for constraining
boundaries Γ `D with respect to index sets D, see (1).

4.2.1 Some preliminary observations

The proof of Theorem 1 relies on several technical results, see Fig. 8. The
first observation will help us to analyze the truncation defined in (6).
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SIC

Lemma 2 IPC

Lemma 3

Lemma 4NNC

Lemma 1

Lemma 5

CCL [32]

Lemma 6

Thm.1 (ii)

Lemma 7

Lemma 8

Thm.1 (i)

Fig. 8: Connections between Assumptions (diamonds), Lemmas (rectangles),
and DPB-spline properties (ellipses).

Lemma 2 Two patch B-splines βk ∈ Bk and β` ∈ B` with intersecting sup-
ports,

∅ 6= suppβk ∩ suppβ` ⊆ Γ `D, with ` < k ∈ D,

satisfy
suppβk ∩ Γ `D ⊆ suppβ` ∩ Γ `D, (10)

if λβk(β̂`) 6= 0.

Proof The existence of non-zero coefficients λβk(β̂`) 6= 0 implies suppβk ⊆
suppβ̂`, hence

suppβk ∩ Γ `D ⊆ suppβ̂` ∩ Γ `D. (11)

We distinguish between several cases: First, we assume that suppβ̂` ∩ π` is
connected. This leads immediately to (10) since β` = β̂`|π` and Γ `D ⊆ π`.

Second, we consider the case that suppβ̂` ∩ π` possesses two connected
components. Thus, besides β`, there exists another patch B-spline β′` such
that suppβ` ∩ suppβ′` = ∅ and

suppβ̂` ∩ π` = suppβ` ∪ suppβ′`. (12)

The intersection of suppβk ∩ suppβ` belongs to the constraining boundary
Γ `D, thus
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∅ 6= suppβk ∩ suppβ` = suppβk ∩ suppβ` ∩ Γ `D. (13)

According to SIC and Eq. (3), suppβk ∩Γ `D is connected. Since the two parts
suppβ` ∩ Γ `D and suppβ′` ∩ Γ `D of the constraining boundary are disjoint it
follows that

suppβk ∩ suppβ′` ∩ Γ `D = ∅. (14)

We observe that (11) is equivalent to

(suppβk ∩ Γ `D) ∩ (suppβ̂` ∩ Γ `D) = suppβk ∩ Γ `D. (15)

We use (12) Γ `D ⊆ π` to rewrite the left-hand side of this equation as

suppβk ∩ suppβ̂` ∩ Γ `D = suppβk ∩ (suppβ` ∪ suppβ′`) ∩ Γ `D.

We simplify the result with the help of (13) and (14),

suppβk ∩ (suppβ` ∪ suppβ′`) ∩ Γ `D = suppβk ∩ suppβ` ∩ Γ `D.

Therefore, (15) is equivalent to

(suppβk ∩ Γ `D) ∩ (suppβ` ∩ Γ `D) = suppβk ∩ Γ `D.

This confirms that
suppβk ∩ Γ `D ⊆ suppβ` ∩ Γ `D.

Finally we note that the proof in case two can be extended to more than two
connected components. �

The next Lemma characterizes the intersection of a truncated patch B-
spline β̃kD, for k ∈ D, with a lower level constraining boundary Γ `D, see Fig. 9.

Lemma 3 The truncated patch B-splines β̃kD ∈ T k satisfy

suppβ̃kD ∩ Γ `D 6= ∅ ⇔ suppβk ∩ Γ `D 6= ∅

if k > ` and k ∈ D.

Proof According to the definition of the truncated functions, suppβk∩Γ `D 6=
∅ implies that suppβ̃kD ∩ Γ `D 6= ∅. In order to prove the other implication, we

assume that there exists a β̃kD ∈ T k such that

suppβ̃kD ∩ Γ `D 6= ∅, for ` < k,

but
suppβk ∩ Γ `D = ∅. (16)

It follows that
suppβ̃kD ∩ (∆D,≥k+1 \ πk) ∩ Γ `D 6= ∅,
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πk

π`

∆D,≥k+1

(a)

πk

π`

∆D,≥k+1

(b)

Fig. 9: According to Lemma 3, the supports suppβk (hatched blue) and
suppβ̃kD (hatched blue and blue) either intersect both with Γ `D (red) or not,
see (a) and (b), respectively.

since β̃kD takes non-zero values only on the associated patch and on the sub-
domain ∆D,≥k+1. Among all such functions we pick one where k is maximal.
The representation

β̃kD =
∑

β̃mD∈P
k+1
D

suppβm∩ suppβk 6=∅

λβm(β̂k) β̃mD on ∆D,≥k+1,

see (6), implies that there exists a function β̃mD ∈ P k+1
D with suppβm ∩

suppβk 6= ∅ such that
suppβ̃mD ∩ Γ `D 6= ∅.

It follows immediately that

suppβm ∩ Γ `D 6= ∅,

since k is the largest level with the property (16). Furthermore, suppβm ∩
suppβk 6= ∅ implies that suppβm ∩ Γ kD 6= ∅, and hence

∅ 6= suppβm ∩ Γ kD ∩ Γ `D ⊆ suppβk ∩ Γ kD ∩ Γ `D = ∅,

where the first equation holds according to IPC, the second statement fol-
lows from Lemma 2, and the last equality is obtained by (16). This is a
contradiction. �

Lemma 3 enables us to reformulate the selection mechanism. More pre-
cisely, instead of considering the truncated patch B-spline β̃kD if suffices to
analyze whether the associated patch B-spline βk vanishes on the constrain-
ing boundary,

S`+1
D = {β̃kD ∈ P `+1

D : βk = 0 on Γ `D}.
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Next, we observe that the truncated patch B-splines β̃kD ∈ T k inherit the
support intersection property:

Lemma 4 The intersections of the supports of truncated patch B-splines
β̃kD ∈ T k with constraining boundaries

suppβ̃kD ∩ Γ `D where ` < k (17)

are connected.

Proof Assume there exists a truncated patch B-spline β̃kD whose support
intersects the lower level constraining boundary Γ `D in more than one con-
nected component. Among all those functions we choose one where k ∈ D
is maximal. The intersection splits into two disjoint sets δ1 6= ∅ and δ2 6= ∅
with δ1 ∩ δ2 = ∅ such that

suppβ̃kD ∩ Γ `D = δ1 ∪ δ2. (18)

SIC requires that suppβk ∩ Γ `D is connected. Since suppβk ⊆ suppβ̃kD, this
implies that suppβk ∩ Γ `D is a subset of one δi whereas its intersection with
the other one is empty. Without loss of generality we assume

suppβk ∩ Γ `D ⊆ δ1 and suppβk ∩ δ2 = ∅. (19)

According to the latter observation, the truncated patch B-spline β̃kD inter-
sects δ2 in patches of levels higher than k, i.e.,

suppβ̃kD ∩ (∆D,≥k+1 \ πk) ∩ δ2 6= ∅.

Due to the definition of the truncation (6), there exists a function β̃mD ∈ P
k+1
D

with suppβm ∩ suppβk 6= ∅ that satisfies

suppβ̃mD ∩ δ2 6= ∅. (20)

Moreover, we have

suppβ̃mD ∩ Γ `D ⊆ suppβ̃kD ∩ Γ `D = δ1 ∪ δ2.

Recall that we assumed k to be maximal. Thus suppβ̃mD ∩ Γ `D is connected
and we obtain

suppβ̃mD ∩ δ1 = ∅. (21)

From suppβm ∩ suppβk 6= ∅ it follows that suppβm ∩ Γ kD 6= ∅. Furthermore,
(20) leads to

∅ 6= suppβ̃mD ∩ δ2 ⊆ suppβ̃mD ∩ Γ `D,

since (18) implies that δ2 ⊆ Γ `D. According to Lemma 3 suppβ̃mD ∩ Γ `D 6= ∅ is
equivalent to suppβm ∩ Γ `D 6= ∅. Applying IPC leads to
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suppβm ∩ Γ kD ∩ Γ `D 6= ∅.

Furthermore, Lemma 2 states that suppβm ∩ Γ kD ⊆ suppβk ∩ Γ kD. Combin-
ing these observations with simple subset relations and (19) results in the
following equations,

∅ 6= suppβm ∩ Γ kD ∩ Γ `D ⊆ suppβk ∩ Γ kD ∩ Γ `D ⊆ suppβk ∩ Γ `D ⊆ δ1.

However, this implies that

∅ 6= suppβm ∩ δ1 ⊆ suppβ̃mD ∩ δ1,

which contradicts (21), and thereby completes the proof. �

Finally we present an extension of Lemma 2.

Lemma 5 The supports of truncated patch B-splines β̃kD ∈ P
`+1
D and patch

B-splines β` ∈ B` of lower level ` < k satisfy

suppβ̃kD ∩ Γ `D ⊆ suppβ` ∩ Γ `D,

if suppβk ∩ suppβ` 6= ∅ and λβk(β̂`) 6= 0.

Proof The proof works similar to the proof of Lemma 2. We do not provide
all details but show how to adapt it to the current situation.

Recall that λβk(β̂`) 6= 0 implies suppβ̂k ⊆ suppβ̂`. From Lemma 1 it

follows that suppβ̃kD ⊆ suppβ̂` and thus,

suppβ̃kD ∩ Γ `D ⊆ suppβ̂` ∩ Γ `D.

As in Lemma 2, the proof follows immediately for the case that suppβ̂` ∩ π`
possesses one connected component. For the other case we note that

∅ 6= suppβk ∩ suppβ` ∩ Γ `D ⊆ suppβ̃kD ∩ suppβ` ∩ Γ `D,

according to the assumption that suppβk ∩ suppβ` 6= ∅. Using Lemma 4
allows us to proceed as in the proof of Lemma 2 using β̃kD instead of βk. �

We introduce the notion of homogeneous boundary conditions: A Cs–
smooth function f satisfies homogeneous boundary conditions in a point x
if the values of the function and of all its partial derivatives up to order
sk = pk − 1 in all variables separately3 are equal to zero,

ϑf(x) = 0,

with

3 For instance, f = fx = fy = fxx = fxy = fyy = fxxy = fxyy = fxxyy = 0 for
x = (x, y) and s = (2, 2).
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[ϑf(x)]i = ∂if(x), i = (i1, . . . , id), ik ≤ pk − 1.

and partial derivative operators

(∂if)(x) =
∂i1

∂xi11
· · · ∂

id

∂xidd
f(x1, . . . , xd).

Since π` can be divided into a set of cells z ∈ Z`, the boundary of a patch
π` naturally splits into facets ξ of different dimensions. E.g., the facets can be
edges or vertices of cells of level ` for dimension d = 2, see also the Appendix
of [10].

Lemma 6 If a function f ∈ V` satisfies homogeneous boundary conditions
on a boundary facet ξ of π`, then λβ`(f) = 0 if ξ ⊆ suppβ`.

Proof We note that for a cell z ∈ Z` and every β` ∈ B` that does not vanish
on that cell, i.e., z ⊆ suppβ`, it holds that

0 6= β`|z = β̂`|z,

according to (4). Suitably adapting the proof of Lemma 2 in [10], which is
based on the Contact Characterization Lemma (CCL) in [32], confirms this
fact. �

4.2.2 Proof of the theorem

Finally, we can prove the results stated in Theorem 1. We prove the state-
ments (i)-(iv) for all subdomains ∆D ⊆ ∆≥`, i.e., D ⊆ {`, . . . , N}, by induc-
tion over `, proceeding from the maximum level N down to 1.

For ` = N we note that ∆≥N = πN . Therefore, a subdomain of ∆≥N is
either the empty set (trivial case) or D = {N}. Then PD = TND consists of
functions

β̃ND =

{
βN on πN

0 elsewhere
.

Therefore, we can conclude that (i)-(iv) are satisfied for any subdomain∆D ⊆
∆≥N . Now we assume that (i)-(iv) are satisfied for any subdomain ∆D ⊆
∆≥`+1. We show that the properties extend to any subdomain ∆D ⊆ ∆≥`.
We consider only the case where ` ∈ D, hence D ⊆ {`, . . . , N}. Otherwise,
the result follows immediately from the induction hypothesis.

First statement (i): We have that

PD = P 1
D = P `D = T `D ∪ S`+1

D .

For functions in S`+1
D the smoothness on ∆D = ∆D,≥` follows from the

induction hypothesis combined with the fact that the functions are zero on
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π` and satisfy homogeneous boundary conditions on Γ `D according to the

selection mechanism. Next we consider a function β̃`D ∈ T `D. We note that β̃`D
obviously possesses the required smoothness on π` and also on ∆D,≥`+1 \ π`
(considered separately). Indeed, its restriction to the latter domain is a linear
combination of functions in P `+1

D , which satisfy the smoothness conditions
according to the induction hypothesis.

Now it remains to be shown that β̃`D possesses the required order of
smoothness on the constraining boundary Γ `D. According to NNC it holds

that β̂` ∈ PN `D . From the induction hypothesis (ii) it follows that there exists
a representation,

β̂` =
∑

β̃k
N`D
∈PN`D

λβk(β̂`)β̃kN `D
on ∆N `D .

We use it to define the auxiliary function

β̂`N `D
=

∑
β̃k
N`D
∈PN`D

suppβk∩suppβ` 6=∅

λβk(β̂`)β̃kN `D
, (22)

by considering only functions near the boundary to suppβ` and observe that

ϑβ̂`N `D
= ϑβ̂` = ϑβ` on Γ `D ∩ suppβ`.

Furthermore, it holds that

ϑβ̂`N `D
= ϑβ` = 0 on Γ `D \ suppβ`,

since suppβ̃kN `D
∩Γ `N `D ⊆ suppβ`∩Γ `N `D according to Lemma 5 and Γ `N `D

= Γ `D.

Therefore, we obtain that ϑβ̂`N `D
= ϑβ` on Γ `D.

Now we show that the auxiliary function shares values and derivatives
with the truncated function along the constraining boundary, ϑβ̂`N `D

= ϑβ̃`D

on Γ `D. More precisely, we prove that

ϑ
( ∑

β̃k
N`D
∈PN`D

suppβk∩suppβ` 6=∅

λβk(β̂`)β̃kN `D

)
= ϑ

( ∑
β̃kD∈P

`+1
D

suppβk∩suppβ` 6=∅

λβk(β̂`)β̃kD
)
, on Γ `D.

(23)
We note that

suppβk ∩ suppβ` 6= ∅ ⇒ βk|Γ `D 6= 0, if k > `.

The proof of (23) is based on two technical Lemmas. The first one states that
the selection mechanism always selects the same functions for D and N `

D.
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Lemma 7 For all βk ∈ Bk with βk 6= 0 on Γ `D it holds that

β̃kN `D
∈ PmN `D ⇔ β̃kD ∈ PmD , (24)

if k ≥ m > `.

Proof On the one hand, we consider a function β̃kD ∈ PmD with suppβk∩Γ `D 6=
∅. Hence, k ∈ N `

D. We note that

PmD =
⋃

k∈D,k≥m

{β̃kD ∈ T kD : suppβk ∩ Γ rD = ∅, for all r ∈ D, m ≤ r < k}

(25)
and

PmN `D
=

⋃
k∈N `D,k≥m

{β̃kN `D ∈ T
k
N `D

: suppβk∩Γ rN `D = ∅ for all r ∈ N `
D, m ≤ r < k},

according to the selection mechanism and Lemma 3. Since Γ rN `D
⊆ Γ rD for

r ∈ N `
D, the first condition suppβk ∩ Γ rD = ∅ implies suppβk ∩ Γ rN `D = ∅ if

m ≤ r < k. Therefore, we conclude that β̃kN `D
∈ PmN `D .

On the other hand, assume there exists a function β̃kN `D
∈ PmN `D with β̃kD 6∈

PmD and βk 6= 0 on Γ `D. We invoke the characterization (25) to conclude that
there exists a level r ∈ D \ N `

D and m ≤ r < k such that suppβk ∩ Γ rD 6= ∅.
The considered function satisfies suppβk ∩ Γ `D 6= ∅ and hence it follows that
suppβk ∩ Γ `D ∩ Γ rD 6= ∅ by IPC. However, since πr is not a neighbor of π` it
holds that Γ rD ∩Γ `D ⊆ πr ∩ π` = ∅ which implies that suppβk ∩Γ `D ∩Γ rD = ∅.
This is a contradiction. �

The second lemma confirms that the functions considered in the previ-
ous lemma possess the same values and derivatives along the constraining
boundary.

Lemma 8 For all functions in (24) with β̃kD ∈ PmD it holds that

ϑβ̃kD = ϑβ̃kN `D
on Γ `D ∩∆D,≥m, (26)

if k ≥ m > `.

Proof We use induction over the level m from n down to ` + 1 with n =
max{k ∈ N `

D}. It suffices to consider these functions since levels higher than
n are not active on Γ `D.

For level n it holds that

β̃nD = βn = β̃nN `D
, on πn,
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for all β̃nD ∈ PnD. Thus, ϑβ̃nD = ϑβ̃nN `D
on Γ `D ∩ ∆D,≥n. In order to complete

the proof by induction, we assume that (26) is satisfied for m + 1 and show
that this extends to m.

First, we consider functions β̃kD ∈ PmD with k > m. The induction hypoth-
esis implies that

ϑβ̃kD = ϑβ̃kN `D
, on Γ `D ∩∆D,≥m+1.

Furthermore, the selection ensures that these functions vanish on πm, hence

ϑβ̃kD = ϑβ̃kN `D
= 0, on Γ `D ∩ πm.

The equality on Γ `D ∩∆D,≥m now follows from

Γ `D ∩∆D,≥m = (Γ `D ∩ πm) ∪ (Γ `D ∩∆D,≥m+1). (27)

Second, we consider the remaining functions β̃mD ∈ TmD . Obviously, it holds
that

ϑβ̃mD = ϑβ̃mN `D
= ϑβm, on Γ `D ∩ πm.

Furthermore,

β̃mD =
∑

β̃rD∈P
m+1
D

suppβr∩suppβm 6=∅

λβr (β̂
m)β̃rD on ∆D,≥m+1.

The previous lemma (see (24)) and the induction hypothesis imply

ϑ
( ∑

β̃rD∈P
m+1
D

suppβr∩suppβm 6=∅

λβr (β̂
m)β̃rD

)
= ϑ

( ∑
β̃r
N`D
∈Pm+1

N`D
suppβr∩suppβm 6=∅

λβr (β̂
m)β̃rN `D

)
= ϑβ̃mN `D

on Γ `D ∩ ∆D,≥m+1. Invoking the decomposition (27) confirms that (26) is

satisfied for all β̃mD ∈ TmD . �

Now we are able to prove the original statement (23). Applying both Lem-

mas with m = `+ 1 confirms that ϑβ̂`N `D
= ϑβ` = ϑβ̃`D on Γ `D = Γ `D ∩∆D,≥`

since PN `D = P 1
N `D

= P `+1
N `D

. Hence, we conclude that the functions β̃`D ∈ T `D
possess the required order of smoothness on ∆D,≥`.

Second statement (ii): We consider a function f ∈ PD. Its restriction to
π` has a representation

f =
∑
β`∈B`

λβ`(f)β` =
∑
β`∈B`

λβ`(f) β̃`D on π`, (28)

since β` = β̃`D on π`. We now define
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f̃ = f −
∑
β`∈B`

λβ`(f) β̃`D on ∆D. (29)

Clearly, f̃ is equal to zero on π` and satisfies homogeneous boundary condi-
tions on Γ `D. We observe that f̃ ∈ P`+1

D . Indeed, the definition of the patch-

work spline space PD gives f ∈ P`+1
D , and the functions β̃`D ∈ T `D are linear

combinations of functions in P`+1
D . According to the induction hypothesis

there exists a representation

f̃ =
∑

β̃kD∈P
`+1
D

λβk(f̃) β̃kD on ∆D,≥`+1. (30)

We consider a function β̃kD ∈ P
`+1
D \ S`+1

D in the above sum. The definition

of S`+1
D and Lemma 3 imply that

suppβk ∩ Γ `D 6= ∅.

There exists a facet ξ of πk ∩ π` ⊆ Γ `D with ξ ⊆ suppβk where f̃ satisfies the
homogeneous boundary conditions. Therefore, we can apply Lemma 6 and
obtain that λβk(f̃) = 0.

Consequently, only functions in S`+1
D contribute to the representation in

(30) and thus, we can extend this representation to ∆D,

f̃ =
∑

β̃kD∈S
`+1
D

λβk(f̃) β̃kD on ∆D. (31)

Therefore, we can combine equations (29) and (31) to represent f with respect
to PD on ∆D,

f =
∑

β̃k∈PD

µβ̃kD
(f) β̃kD on ∆D, (32)

with coefficients

µβ̃kD
(f) =

{
λβ`(f) if k = `

λβk(f̃) otherwise.

Finally, we note that the functions in PD are linearly independent. Indeed,
T `D is linearly independent on π`, since β̃`D = β` on π` and the functions β`

are linearly independent on π`. Moreover, the remaining functions in S`+1
D ⊆

P `+1
D vanish on π` while being linearly independent on ∆D,≥`+1 according to

the induction hypothesis.

Third statement (iii): We rewrite Equation (32) by using the definition of
the DPB-splines PD and obtain

f =
∑

β̃`D∈T `D

µβ̃`D
(f) β̃`D +

∑
β̃kD∈S

`+1
D

µβ̃kD
(f) β̃kD on ∆D. (33)
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This confirms (9) with respect to the patch B-splines on π` since µβ̃`D
(f) =

λβ`(f).
Next we consider the restriction of f to ∆D,≥`+1. On the one hand, it

satisfies
f =

∑
β̃kD∈P

`+1
D

λβk(f) β̃kD on ∆D,≥`+1, (34)

according to the induction hypothesis (ii). On the other hand, we may rewrite
(33) as

f =
∑

β̃`D∈T `D

λβ`(f)
∑

β̃kD∈P
`+1
D

suppβ`∩suppβk 6=∅

λβk(β̂`) β̃kD

︸ ︷︷ ︸
(?)

+
∑

β̃kD∈S
`+1
D

µβ̃kD
(f) β̃kD

on ∆D,≥`+1, according to the definition of the truncation operator. Note

that none of the functions β̃kD that appear in the double sum (?) belong to
the set S`+1

D of selected functions, since suppβ` ∩ suppβk 6= ∅ implies that
βk 6= 0 on Γ `D. Therefore, comparing the coefficients with (34) confirms that

µβ̃kD
(f) = λβk(f) for β̃kD ∈ S

`+1
D .

Fourth statement (iv): First, we show that the basis functions in P `D =
T `D ∪ S

`+1
D are non-negative on ∆D.

Since S`+1
D ⊆ P `+1

D the induction hypothesis implies that functions in S`+1
D

are non-negative on ∆D,≥`+1. This extends to ∆D as these functions vanish
on π` according to the selection mechanism. The functions in T `D are non-

negative on π` since there β̃`D = β` and the functions β` are non-negative.
Moreover, their representation with respect to P `+1

D \ S`+1
D on ∆D,≥`+1 is a

linear combination of non-negative functions with non-negative coefficients.
Second, we note that the partition of unity is obtained by applying (9) to

the function f = 1.

This completes the proof of Theorem 1.

5 Comparison with THB- and TPB-splines

This section is used for comparing the flexibility of DPB-, TPB- and THB-
splines. First, we observe that the new construction of DPB-splines comple-
ments the other two bases. To be more precise, on some hierarchies we can
construct only one of the bases while on others we can define two or even all
three of them.

Example 4 We consider several instances of hierarchical meshes for spline
spaces of degree p = (2, 2) and discuss if the hierarchies possess a DPB-
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spline basis, see Fig. 10. Note that IPC and SIC are automatically satisfied
for a patch π` if it shares its boundary with higher level patches only, e.g., as
it is the case for the first patch π1. Furthermore, if a patch of level ` shares
its boundary with only one patch of lower level k < ` then IPC and SIC are
satisfied for π`. Moreover, we analyze if we can construct a TPB-spline basis
or a THB-spline basis on these meshes:

• A hierarchy is feasible for THB-splines if the spline spaces of all levels are
nested [18].

• For TPB-splines the FSC (“full shadow compatibility”) and CBA (“con-
strained boundary alignment”) assumption, see [10], have to be fulfilled
in order to obtain a basis. Note that CBA is satisfied if all patches are
aligned with the knot lines of the corresponding spline space.

We observe that the new construction of DPB-splines complements the other
two bases.

Although there exist hierarchies that are valid for TPB- and not for DPB-
splines we conjecture that this set is rather small compared to the set of
hierarchies that possess a DPB- and no TPB-spline basis. The following ex-
ample supports this assumption.

Example 5 We consider the regular subdivision of the unit square into 4 ×
4 patches and randomly assign values from 0 to 3 to each patch. The
spline spaces of the patches remain unchanged, are refined dyadically in x1-
direction, in x2-direction and in both directions for the values 0, 1, 2 and 3,
respectively. The patches are sorted according to these values, and patches
with the same value are ordered randomly. We compute 120, 000 samples of
such random hierarchies and analyze how many of them are feasible for TPB-
and DPB-splines. The results are reported in Table 1. Most of the samples
(114, 605) do not satisfy NNC and are unsuitable for all constructions. From
the remaining 5, 395 hierarchies, 588 (approx. 11%) can be equipped with a
DPB-spline basis, but only 4 (approx. 0.07%) admit a TPB-spline basis. 3
hierarchies are valid for TPB- and DPB-splines. The same experiment was
performed for bicubic splines, on 3 × 3 patches with triadic refinement, see
Table 1 last row. Finally, we note that very few (2 and 231) of the 120, 000
samples did not use anisotropic refinement, i.e., not the refinement values 1
and 2.

nested DPB TPB both

p = (2, 2), 4× 4 patches 5, 395 588 4 3

p = (3, 3), 3× 3 patches 25, 169 11, 636 2, 011 1, 757

Table 1: Example 5 – Experimental quantification of patch structures suitable
for TPB- and DPB-splines.
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H1
H2

H3

H4

H5
H6

H7

DPB-splines

THB-splines

TPB-splines

Hierarchy H1 Hierarchy H2 Hierarchy H3 Hierarchy H4

Hierarchy H5 Hierarchy H6 Hierarchy H7

Fig. 10: Venn diagram and hierarchical meshes for DPB-, TPB- and THB-
splines.

6 Macro element refinement for adaptive surface
reconstruction

We present an adaptive refinement algorithm for surface approximation that
generates a two-dimensional patchwork hierarchy where NNC, IPC and SIC
are satisfied. Thus, a DPB-spline fitting surface can be constructed on the
patch structure. In contrast to our previous algorithm in [10], this new pro-
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cedure avoids additional refinement and expensive sorting by constructing a
valid hierarchy directly.

6.1 Sufficient condition

A hierarchy of patches π` and spaces V`, for ` = 1, . . . , N , will be called
feasible if the corresponding patchwork spline space can be equipped with a
DPB-spline basis. Therefore, in order to analyze whether a given hierarchy is
feasible, we have to check if NNC, IPC and SIC are satisfied for all patches
and corresponding spline spaces. Verifying the latter two assumptions might
be expensive since it requires us to go through all patch B-splines. However,
for certain types of patches we can formulate conditions for IPC and SIC in
the bivariate case, i.e., d = 2, that analyze only the boundary of a patch.

We define a lower level boundary component (LLBC) of a patch π` as a
connected component of

πk ∩ π` 6= ∅, k < `.

Clearly, IPC and SIC are satisfied for all patches with at most one LLBC.
In addition to this simple observation, we present a necessary and sufficient

condition for a certain class of patches. A fat patch π` is the union of mutually
disjoint boxes composed of p1 × p2 cells in Z`, where adjacent boxes share
either a horizontal or a vertical boundary segment of p1/p2 knot spans, see
Fig. 11. We consider single LLBCs of π` and connected components of Γ `.
These parts of the boundary are denoted as critical boundary components if
they are enclosed by LLBC(s) at both ends.

(a) (b) (c) (d)

Fig. 11: Two fat patches (a) and (b) for p = (2, 2). The patch shown in (c)
is not a fat patch, since not all disjoint boxes are composed of 2× 2 cells and
(d) is not a fat patch, since the shared segment between the north-western
and the south-eastern boxes consisting of 2× 2 cells is too short.
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Corollary 2 IPC and SIC are satisfied for a fat patch π` if and only if the
width or the height of each critical component δ equals at least p1 or p2 knot
spans with respect to V`.

Proof First, we show that the condition on the critical components is suffi-
cient. The intersection suppβ`∩∂π`, for β` ∈ B` is either empty, a horizontal
or vertical line segment that is p1 + 1 or p2 + 1 knot spans long with re-
spect to V` or a polygon composed of a horizontal and vertical line segment
with a maximum length of p1 and p2 knot spans, respectively. Therefore, if a
patch B-spline β` intersects two LLBCs of π`, γ1 and γ2, then it holds that
suppβ` ∩ γ1 ∩ γ2 6= ∅. This implies IPC and SIC for π`.

Second, we prove that the condition is also necessary for IPC and SIC. We
assume that there exists a critical boundary component δ that is joined to
the LLBCs γk ⊆ πk and γm ⊆ πm at each end and does not meet the required
assumption. Consequently, there exists a patch B-spline β` ∈ B` such that

suppβ` ∩ γk 6= ∅ and suppβ` ∩ γm 6= ∅.

If k = m then SIC is not fulfilled. For k 6= m IPC can be only satisfied if
there is another LLBC γ′ of πk or πm such that suppβ` ∩ γm ∩ γ′ 6= ∅ or
suppβ` ∩ γk ∩ γ′ 6= ∅, respectively. However, then SIC is violated either for
level k or m. �

6.2 Macro elements

We consider bivariate tensor-product spline spaces of fixed degree p = (p1, p2)
defined by uniform knot vectors obtained by performing ri-times pi-adic re-
finement in i–th direction, i = 1, 2. To be more precise, the spline space

Sr = S(r1,r2)

possesses the knot vector

(0, . . . , 0,
1

(pi)ri
, . . . ,

(pi)
ri − 1

(pi)ri
, 1, . . . , 1),

in the i–th coordinate direction. These spline spaces are collected in a set,
which we denote by S. A local spline space V` is then defined as the restric-
tion of a tensor-product spline space V̂` ∈ S to the corresponding patch.
Consequently, there is a function

r : {1, . . . , N} → N× N

such that V̂` = Sr(`) and
V` = Sr(`)|π` .
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The knot lines of a spline space Sr divide the domain into a set of cells Ẑr.
Hence, we obtain the local cell set

Z` = Ẑr(`)|π` .

We introduce a set of macro elements Mr, which contains the disjoint axis-
aligned boxes consisting of p1 × p2 cells in Ẑr. To be more precise, the set
Mr contains the p1 × p2 subgrids of Ẑr with lower left corners

(
mp1

(p1)r1
,
np2

(p2)r2
), for m,n ∈ Z.

6.3 Iterative refinement and its application to surface
approximation

We consider an iterative refinement procedure consisting of several refinement
steps. The input is a hierarchy where the patches are equal to the macro el-
ements of an initial tensor-product spline space Sr. In each refinement step
we add knots to the spline spaces of certain marked patches, thereby gen-
erating patches with finer spline spaces. A refinement indicator marks the
cells that should be refined and a direction indicator specifies the refinement
direction, i.e., whether we perform knot insertion in the first (or x1-) coor-
dinate direction, second (or x2-) coordinate direction, or both. The concrete
choice of these indicators depends on the application. For the case of surface
approximation, it will be discussed below.

We refine such that the tensor-product spline spaces of neighboring patches
are nested, which guarantees that NNC is fulfilled. As a consequence the re-
finement is not according to the direction indicator in some cases. Further-
more, all cells of a marked patch will be refined to the same spline space.
Hence, a marked patch is replaced by at least p1, p2 and p1 × p2 patches,
which are again macro elements, for refinement in x1-, x2- and both direc-
tions, respectively. More precisely we apply the following procedure:

• Determining a refinement order: We sort the marked macro elements µ ∈
Mr(`), for ` = 1, . . . , N , lexicographically with respect to

(r1(`) + r2(`), r2(`), δ(µ)).

The elements are then refined one by one in this order.
• Refinement of the elements: The corresponding spline space of an element
µ ∈Mr(`) is refined to a new spline space Vr(k) that satisfies

(i) ri(k) ≥ ri(`), for i = 1, 2,
(ii) Sr(k) is nested with the current spline spaces of neighboring patches,

and
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(iii) |r1(k)− r2(k)| ≤ 3.

Note that the property (iii) controls the aspect ratio of the elements. If
refinement according to the direction indicator does not result in a space
that fulfills these properties then we choose the smallest r(k) with respect
to the lexicographical ordering (r1 + r2, r2) that satisfies them.

• Final ordering: We sort all macro elements lexicographically with respect
to (r1 + r2, r2) and apply the selection mechanism.

Fig. 12: Example 6 – Illustration of one refinement step.

Example 6 We consider the hierarchy in Fig. 12 on the left for p = (2, 2). The
first five patches (nos. 1-5, south-west and north-east) are macro elements of
the spline space S(3,3), followed by eight macro elements (nos. 6-13, north-
west) from M(4,3) and eight elements (nos. 14-21, south-east) from M(3,4).
The remaining 12 patches (nos. 22-33, center) are elements ofM(4,4). Within
each group of macro elements the chosen ordering does not affect the outcome
of the algorithm in this case. The refinement and direction indicators mark
certain patches for refinement as illustrated in the middle picture. Blue, red
and green cells are marked for refinement in x1-, x2- and both directions,
respectively. The image on the right shows the resulting mesh after the cor-
responding knot (local) insertion. Note that the macro element with lower
left corner ( 1

4 ,
3
4 ) is marked for refinement in x2-direction, which would result

in non-nested spaces of neighboring patches. Therefore, we refine this patch
in both directions instead. ♦

A hierarchy that is constructed by this refinement procedure is feasible for
DPB-splines. NNC is satisfied by the definition of the refinement algorithm.
Moreover, all patches are boxes of size p1×p2 and according to the refinement
mechanism, a patch shares an entire edge of its boundary either with a single
patch of lower level or several patches of higher levels. Therefore, Corollary 2
guarantees that IPC and SIC are satisfied for all levels.

Furthermore, the so-constructed hierarchies also admit (T)PB-spline bases.
Since all patches are aligned with the knot lines of the corresponding spline
spaces CBA is satisfied. Moreover, the tensor-product basis functions β̂` that
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do not vanish on the corresponding patch π` intersect only with neighboring
patches of lower level or higher level patches where the corresponding spline
space is a superspace of V̂`. This implies that FSC is satisfied.

The remainder of this section presents some details concerning the indi-
cators used to perform surface approximation. More precisely, we use the
refinement procedure in an iterative algorithm for approximating data with
a DPB-spline surface by a standard regularized least-squares fitting, cf. [26].
The algorithm stops if the error does not exceed a user-defined threshold ε
in a certain percentage of data points (usually between 95% and 99%) or
the numbers of degrees of freedom or iteration steps exceed a predefined
maximum. The refinement algorithm is guided by the following indicators:

• Refinement indicator: We mark all patches that contain points with an
error exceeding a certain threshold.

• Direction indicator: The desired refinement direction for the marked el-
ements is determined by a local-fitting method, see [10]. The direction
indicator δ(µ) takes the values 1, 2 or 3 for refinement in x1-, x2- and
(x1, x2)-direction, respectively.

Example 7 We approximate the data set of Example 6 in [10] by biquadratic
splines, i.e., p = (2, 2), and compare the hierarchies obtained from the macro
element refinement (MER) and the original, simple patch refinement (SPR)
algorithm presented in [10].

For both algorithms we choose the initial spline space S(3,3), thus we obtain
4 × 4 initial macro elements/patches for MER. For SPR, the initial number
of patches is user-defined and we decide to start from a single patch. The
regularized least-squares fitting is solved with smoothness parameter λ =
1e− 7 and the iteration stops if the error in ≥ 98% of the points is lower or
equal to the threshold ε = 1e− 4. Fig. 13 depicts the resulting surface (note
that the surfaces are visually identical for both algorithms and therefore we
display only one of them) and meshes of both algorithms. Table 2 presents the
number of degrees of freedom, some error statistics and computation times for
both methods in rows 1 and 4, respectively. We observe that MER achieves
a similar good result with fewer degrees of freedom than SPR. Furthermore,
the sorting and possible additional refinement that is necessary for generating
a feasible hierarchy in SPR is not required by MER, which is reflected in the
lower computational times. The more patches are present in a hierarchy the
more pronounced the difference becomes.

Moreover, we observed that SPR is very sensitive to the choice of the initial
setting. If we choose the same initial spline space but start from four patches
we obtain significantly worse results, see Table 2, second row. Therefore, in
order to obtain good results in terms of number of degrees of freedom and
computation time it is crucial to find a suitable initial setting for SPR. In
contrast to this, the initial setting for MER is defined by the initial spline
space only. We obtained nearly equivalent results for sufficiently coarse initial
layouts, see row 3 and 5 of Table 2. ♦
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no. of dofs % of dofs max. error avg. error total time

SPR – 1 patch 13, 579 100% 6.9e−4 2.24e−5 8min 34sec

SPR – 4 patches 21, 607 159% 1e−3 2.28e−5 1h 8min

MER – (2, 2) 9, 732 71.7% 6.4e−4 2.44e−5 5min 46sec

MER – (3, 3) 9, 732 71.7% 6.4e−4 2.44e−5 5min 40sec

MER – (4, 4) 9, 732 71.7% 6.4e−4 2.44e−5 4min 52sec

Table 2: Example 7

Example 8 We reconstruct a real-world aircraft engine blade from ≈ 300, 000
data points, which were obtained by optical scanning. Many industrial appli-
cations require C2-smooth surfaces and thus, the data set is approximated
by bicubic splines. We set λ = 5d − 7, ε = 2d − 5 and stop the iteration if
≥ 95% of the data points are below the threshold. Again we compare the
results of the SPR and MER algorithm, see Fig. 14 and 15 for images of the
geometry and the meshes and Table 3 for statistics.

The SPR algorithm uses dyadic knot refinement and starts from the initial
hierarchy consisting of 8 patches with initial spline spaces defined by the
periodic knot vectors
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34
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)

in both directions. The resulting mesh from the iterative fitting process is
depicted in Fig. 15 (left) and additional information is given in the first row
of Table 3. Changing the initial setting for SPR again leads to a drastically
different result, see row 2 of Table 3.

For MER we start from the initial spline space S(3,3) with periodic knot
vectors and perform triadic knot refinement. The resulting mesh is depicted
in Fig. 15 on the right. As before, the algorithm yields a result with fewer
degrees of freedom and less computation time but comparable errors, see
fourth row of Table 3. Furthermore, MER leads to a surface with a better
visual quality compared to the result obtained by SPR, see Fig. 14. The
SPR based surface (center) possesses oscillations that are not present or less
pronounced in the MER based surface (right). Choosing the initial spline
spaces S(2,2) and S(4,4) again leads to similar results, see rows 3 and 5 of
Table 3. Although the numbers of degrees of freedom vary, all three initial
settings need similar computation time and lead to similar approximation
errors. ♦
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Fig. 13: Example 7 – Approximated surface (top) and corresponding meshes
for SPR (left) and MER (right). Patch boundaries are black. The knot lines
of a spline space S(r1,r2) are colored according to the dominant refinement
direction, from blue (r1 > r2) via green (r1 = r2) to red (r1 < r2).

7 Conclusion

The definition of a TPB-spline basis requires a strong nestedness assump-
tion, which limits the choice of possible refinement strategies. The new con-
struction of DPB-splines, which was presented in this paper, substantially
increases the flexibility for anisotropic refinement. The use of locally defined,
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Fig. 14: Example 8 – Approximated surface (left) and reflection line analysis
for SPR (middle) and MER (right).

Fig. 15: Example 8 – Meshes for SPR (left) and MER (right).

no. of dofs % of dofs max. error avg. error total time

SPR – 16 patches 19, 823 100% 5.0e−5 3.32e−6 17min 38sec

SPR – 64 patches 31, 184 157.3% 1.1e−3 3.51e−6 54min 40sec

MER – (2, 2) 9, 774 49.3% 5.6e−5 3.84e−6 11min 47sec

MER – (3, 3) 13, 284 67% 5.6e−5 3.33e−6 10min 20sec

MER – (4, 4) 24, 498 123.6% 5.6e−5 3.01e−6 14min

Table 3: Example 8
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decoupled basis functions enables the definition of a basis under three as-
sumptions (NNC, IPC and SIC) that affect only the direct neighborhood of
a patch. In particular, only the spaces associated with neighboring patches
have to be nested. Furthermore, for a certain class of patches we identified a
particularly simple sufficient condition for IPC and SIC.

The DPB-splines possess the required order of smoothness, they span the
patchwork spline space, form a non-negative partition of unity and preserve
the coefficients of the local B-spline representations. Moreover, the DPB-
splines are algebraically complete, i.e., the patchwork spline space is equal to
the full spline space. This property is not necessarily satisfied for the (T)PB-
splines. Although there exist some hierarchies that are valid for TPB-splines
but cannot be equipped with a DPB-spline basis, this set is rather small
compared to the hierarchies that are feasible for DPB-splines and do not
allow the definition of a TPB-spline basis.

Finally, the definition of DPB-splines inspired us to introduce a new re-
finement algorithm for least-squares fitting. The resulting hierarchies admit
a PB-, TPB- and DPB-spline basis. Furthermore, this macro element-based
refinement offers the significant advantage that a feasible hierarchy is au-
tomatically generated without the additional sorting and refinement that is
required for the previous SPR algorithm presented in [10]. This enabled us to
reduce the computation time and the number of degrees of freedom compared
to SPR, while preserving the high quality of the results.
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19. C. Giannelli, B. Jüttler, and H. Speleers. Strongly stable bases for adaptively
refined multilevel spline spaces. Adv. Comput. Math., 40(2):459–490, 2014.
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