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Abstract

Isogeometric analysis (IGA) is a numerical method, proposed in [1], that connects computer-aided
design (CAD) with finite element analysis (FEA). In CAD the computational domain is usually
represented by B-spline or NURBS patches. Given a B-spline or NURBS parameterization of
the domain, an isogeometric discretization is defined on the domain using the same B-spline or
NURBS basis as for the domain parameterization. Ideally, such an isogeometric discretization
allows an exact representation of the underlying CAD model.

CAD models usually represent only the boundary of the object. For planar domains, the CAD
model is given as a collection of curves representing the boundary. Finding a suitable parameteri-
zation of the interior is one of the major issues for IGA, similar to the mesh generation process in
the FEA setting. The objective of this isogeometric parameterization problem is to obtain a set of
patches, which exactly represent the boundary of the domain and which are parameterized regu-
larly and without self-intersections. This can be achieved by segmenting the domain into patches
which are matching along interfaces, or by covering the domain with overlapping patches. In this
paper we follow the second approach.

To construct from a given boundary curve a planar parameterization suitable for IGA, we
propose an offset-based domain parameterization algorithm. Given a boundary curve, we obtain
an inner curve by generalized offsetting. The inner curve, together with the boundary curve,
naturally defines a ring-shaped patch with an associated parameterization. By definition, the ring-
shaped patch has a hole, which can be covered by a multi-cell domain. Consequently, the domain
is represented as a union of two overlapping subdomains which are regularly parameterized. On
such a configuration, one can employ the overlapping multi-patch (OMP) method, as introduced
in [2], to solve PDEs on the given domain. The performance of the proposed method is reported
in several numerical examples, considering different shape properties of the given boundary curve.
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1. Introduction

Isogeometric Analysis (IGA) is a computational approach, proposed by Hughes et al. [1],
connecting computer-aided design (CAD) and finite element analysis (FEA). See also [3, 4, 5] for an
overview and summary of the framework. In the IGA framework, we use the same basis functions for
describing the geometry and for the numerical analysis. Therefore, isoparametric/isogeometric test
and trial functions are employed to perform the simulations directly on the geometry representation
of the CAD models.

One of the advantages of IGA – when compared to the finite element method (FEM) – is the
ability to exactly represent computational domains from CAD using B-spline or NURBS basis
functions. In FEM, one first has to obtain a discrete mesh from a given CAD model. This mesh
generation process is, in general, expensive. In IGA, the geometry of the computational domain is
often given directly from the CAD model. A spline geometry is determined by the degree of the
basis functions, knot vectors and control points. However, in a CAD model, the computational
domain is usually given by a boundary representation, that is, by a (collection of) boundary curves
in 2D or surfaces in 3D. Hence, obtaining a spline representation of the interior of a complex domain
from a given CAD description of its boundary is a big challenge in IGA.

The domain parameterization from a given, complicated boundary curve requires, in general, a
segmentation of the domain as a first step. More precisely, if a complex boundary curve is given,
one needs to divide the interior into several segments, such that each segment can be parameterized
using simple patches. Hence, after the segmentation step, appropriate parameterization methods
can be performed on each single segment to obtain a parameterization of the entire computational
domain.

In the planar case, the representation of the computational domain is given by a collection
of boundary curves. There exist several methods to segment and parameterize the interior of the
computational domain, e.g., [6] based on patch adjacency graphs, [7] using a template segmentation,
or [8, 9] based on a skeleton-based parameterization method. In [10] and [11] the authors proposed
algorithms to decompose trimmed surfaces into regular patches. In [12], an algorithm is introduced
to decompose a complex planar domain into square-like patches.

The goal is always to cover the interior, starting from the given boundary curves, using appro-
priate spline patches. The efficiency of the parameterization method depends on the requirements
for the resulting parameterization of the domain. To obtain multi-patch volume segmentations for
IGA, one may apply the isogeometric segmentation pipeline [13, 14, 15, 16, 17, 18] or [19, 20, 21].

The accuracy of a numerical simulation method performed on the computational domain de-
pends on the quality of the patch parameterization. Therefore, we need to apply a parameteriza-
tion method, in which the resulting patches are regular, smooth and without any self-intersections.
Possible approaches include [22], based on a low-rank parameterization, [23], based on an adaptive
template mapping technique, a PDE-based parameterization method proposed in [24], [25], based
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on a Teichmüller map, or [26, 27], based on harmonic functions.
It is important to note, that one usually does not allow overlaps between patches, unless one

applies a method that can handle overlapping subdomains, such as the one developed in [2].
In this paper, we assume that the interior of the given boundary curve is parameterized by two

overlapping patches, a ring-shaped patch with a hole and another patch covering the hole. Such a
segmentation process is easy and can be performed for a considerable range of given boundary curves
in 2D. To this end, we propose an algorithm to construct a ring-shape patch parameterization.
Moreover, allowing overlapping patches, a multi-cell domain covering the remaining hole can also
be defined relatively easily. In the following, we consider related approaches for segmentation as
well as for parameterizations of computational domains.

The parameterization problem is related to shape optimization. See, e.g., [28, 29], where the
authors propose a general framework for isogeometric parameterization and shape optimization
by describing several linear and non-linear parameterization methods, for an isogeometric shape
optimization model problem, in which the shape can be varied freely.

It is not always clear if a parameterization method yields a parameterization without self-
intersections. In [30], the authors propose a method where a constrained optimization problem is
solved by minimizing the quadratic energy function corresponding to the first and second derivatives
of the planar B-spline parameterization. This method ensures that the resulting parameterization
does not have any self-intersection.

For some applications, it is not enough to obtain a multi-patch parameterization, since additional
conditions need to be satisfied. This is, e.g., the case if global C1 smoothness is needed (when solving
fourth order PDEs). Such a parameterization problem is considered in [31]. Since the present paper
is based on the OMP method in [2] for second order PDEs, a discretization that allows C0 coupling
is sufficient.

In the present paper, we propose a new parameterization method for IGA, the so-called offset-
based overlapping domain parameterization (OODP) method. In this method, we employ a regu-
larly parameterized periodic spline curve. Using the periodic curve mentioned above, we generate
an inner curve by generalized offsetting. In the next step, we solve an optimization problem based
on its first and second derivatives to make the inner curve as smooth as possible. Summing up, we
obtain a ring-shaped patch as the resulting parameterization, which by definition has a hole. In
the end, we construct an appropriate multi-cell domain covering the hole. Hence, the final compu-
tational domain is represented as a union of two overlapping subdomains. We use the overlapping
multi-patch (OMP) method proposed in [2] to solve PDEs on the constructed domain.

The OODP method is similar to [32], where the authors proposed an isogeometric scaled bound-
ary parameterization method, which is an extension of the scaled boundary finite element method.
There the resulting patch parameterizations are bivariate or trivariate B-spline functions which
are suitable for standard Galerkin-based IGA. The difference is that the scaled boundary method
results in a singular point in the interior that one needs to handle properly.

3



Moreover, the OODP method can be seen as an alternative to the method proposed in [33],
based on an immersed boundary curve. There one considers a boundary curve immersed in a
regular grid. The physical domain is then given by those (cut) grid cells in the interior of the given
curve. The grid cells that cover the physical domain can thus be interpreted as a multi-cell domain
with cut cells. Since the boundary curve cuts some of the cells, the basis functions need to be cut
as well along the prescribed boundary curve. To obtain a stable discretization, some basis functions
that have support near the boundary need to be modified.

In our method, instead of cutting the basis functions that have support at the boundary, we
drop all functions that are close to the boundary. To be able to approximate any function on the
physical domain, the region close to the boundary is covered by the ring-shaped patch. Since we
can handle such overlapping patches directly, we do not need to apply any modification of the basis
functions.

The structure of this paper is given as follows. In Section 2 we give an overview of the input and
output of the OODP method. The OODP algorithm is described and its performance is studied
experimentally in Section 3. In Section 4 we extend the method to boundary curves with corners.
Finally, we employ the overlapping multi-patch (OMP) method, which is proposed in [2] and briefly
summarized in Section 5, to solve second order PDEs on the resulting domain parameterizations.
We provide numerical experiments in Section 6.

2. The offset-based overlapping domain parameterization method

Given a simply-connected planar domain represented by its boundary curve, we propose an
algorithm to generate a parameterization of the domain consisting of two overlapping patches. First
we construct a ring-shaped patch from the boundary curve by generalized offsetting. The part of
the domain which is not parameterized by this ring-shaped patch is then covered with a multi-cell
domain. We call this approach offset-based overlapping domain parameterization (OODP). We
first discuss the structure of the input and output in Section 2.1. Then, in Section 2.2 we give a
step-by-step overview of the OODP strategy. In Section 2.3 we summarize how the overlapping
multi-patch formulation developed in [2] is applied to the resulting two-patch parameterization.

2.1. Structure of input and output

As an input we consider a regularly parameterized, 1-periodic, smooth, simple spline curve
CB(t) : R → R2, with counter-clockwise orientation, representing the boundary of the domain Ω.
We assume CB ∈ (Sph)2, where Sph is a spline space of degree p with 1-periodic knot vector Ξh over
R. From this boundary curve we construct a ring-shaped patch as is shown in Figure 1 (left). By
definition, the ring-shaped patch has a hole in the middle, which we cover with a multi-cell domain.
A multi-cell domain consists of a finite set of cells that are defined as follows

Cij = [hi, h(i+ 1)]× [hj, h(j + 1)], (i, j) ∈ IM , (1)
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where, IM is a finite index set. The multi-cell domain ΩC is then given as the interior of the union
of all Cij for (i, j) ∈ IM .

Therefore, the output of our algorithm consists of a ring-shaped patch ΩR with parameterization
F, covering a neighborhood of the boundary curve, as well as a multi-cell domain ΩC covering the
hole Ω \ ΩR. See Figure 1.

2.2. The OODP algorithm

In the following we present the algorithm to construct an OODP for a smooth curve as given
in Section 2.1. We will consider curves with corners in more detail in Section 4. Therefore, we
construct an open, ring-shaped patch ΩR having the parameterization F : ]0, 1[× [0, 1[, with

F(s, t) = CB(t) · (1− s) + CI(t) · s, (2)

satisfying the periodicity condition F(s, 0) = F(s, 1), where the value at t = 1 has to be considered
in the limit. By construction, the curves CB and CI are in the same 1-periodic spline space
CB,CI ∈ (Sph)2. We want the parameterization to be regular, i.e.,

det∇F(s, t) ≥ c > 0, for all (s, t) ∈ ]0, 1[× [0, 1[ .

The algorithm consists of the following steps.

Step 1: Construct a generalized inner offset curve

Given a boundary curve CB we define a generalized inner offset curve CO as follows

CO(t) = CB(t) + µ(t) · q(t), t ∈ [0, 1[ , (3)

where µ(t) > 0 and q is a predefined quasi-normal vector to the curve CB, that is, a vector which
is continuous in t, 1-periodic, non-tangential and pointing inwards (a generalization of a normal
vector). The function µ is assumed to be a 1-periodic spline of degree p, which is determined by a
regularized, quadratic minimization problem, which will be described later.

Note that the curve CO is a generalization of a classical offset curve. For instance, if q is the
unit normal to CB and µ is chosen to be a constant, then CO is a classical offset curve.

Step 2: Fit a B-spline parameterization to the ring-shaped patch

Given CB and CO, as constructed in Step 1, we define

F̃(s, t) = (1− s)CB(t) + sCO(t) = CB(t) + s µ(t)q(t), (s, t) ∈ ]0, 1[× [0, 1[ . (4)

Since F̃ is, in general, not a spline parameterization, we solve the following fitting problem

min
F∈(S1

1⊗S
p
h)2
‖F− F̃‖2

L2(]0,1[2)
, s.t. F(0, t) = F̃(0, t) and F(s, 0) = F(s, 1), (5)
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where S1
1 is the space of polynomials of degree 1 over ]0, 1[ and Sph is the spline space of degree p

and mesh size h containing the input curve.
If the curve CO obtained in Step 1 is suitable, then the parameterization F̃ is regular, cf.

Theorem 2. Assuming moreover that the fitting is stable and does not yield a too large distortion,
the B-spline parameterization F is also regular. Thereby, we set the ring-shaped patch to be
ΩR = F(]0, 1[× [0, 1[).

A short computation confirms that the minimization problem simplifies to

min
CI ∈ (Sph)

2

CI(0) = CI(1)

‖CI(t)−CO(t)‖2
L2(]0,1[). (6)

Step 3: Cover the hole by a multi-cell domain

From the previous step we obtain a ring-shaped patch ΩR ⊂ Ω. We cover the hole Ω \ ΩR

inside the ring, using a multi-cell domain ΩC, such that Ω \ ΩR ⊂ ΩC ⊂ Ω. An example of a
ring-shaped patch is illustrated in Figure 1 (left). We cover the hole by a multi-cell domain, see
Figure 1 (center), such that the patches are overlapping. The resulting parameterization is shown
in Figure 1 (right).

Figure 1: A ring-shaped domain ΩR (red) and a multi-cell domain ΩC (blue) covering the hole Ω \ ΩR.

Remark 1. In the numerical experiments, we always cover the hole with a rectangle or a domain
which is a union of two overlapping rectangles with matching meshes, to simplify the implementa-
tion. In the examples we present here, this is done by hand. However, the task may be automatized
relatively easily using the following approach.

To explain the algorithm for creating a multi-cell domain, we consider Figure 1 (left), which
depicts a ring-shaped patch ΩR and a lattice with distance h in both directions. This lattice creates
a set of cells Cij as in (1). All cells that satisfy Cij ∩ (Ω \ ΩR) 6= ∅ are selected for the multi-cell

domain ΩC =
⋃
i,j∈IM Cij. If the ring-shaped patch does not have any artifacts, the obtained
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multi-cell domain ΩC and the ring-shaped domain are overlapping and, moreover, the cells are fully
connected without any gaps and there are no isolated cells. If the lattice distance h is chosen small
enough, then ΩC ⊂ Ω. Thereby, we end up with a domain parameterization, which is a union of
two overlapping subdomains (see, Figure 1 (right)).

2.3. The overlapping multi-patch formulation

From the algorithm described above, we obtain open, overlapping patches ΩR and ΩC covering
the open domain Ω = ΩR∪ΩC. We solve a PDE on the domain Ω using the overlapping multi-patch
(OMP) method as proposed in [2].

Assume that A(.) and L(.) are appropriate multilinear forms derived from a PDE. The continu-
ous problem looks as follows: find (uR0 , u

C
0) ∈ H1

0 (ΩR)×H1
0 (ΩC) and (uRM , u

C
M) ∈ H1(ΩR)×H1(ΩC)

such that

A((uR0 + uRM , u
C
0 + uCM), (vR0 , v

C
0 )) = L(vR0 , v

C
0 ), ∀(vR0 , vC0 ) ∈ H1

0 (ΩR)×H1
0 (ΩC) (7)

C(uR0 , u
C
0 , u

R
M , u

C
M) = 0. (8)

Here, (7) corresponds to a variational formulation of a PDE and (8) is a coupling condition on the
coupling boundaries ∂ΩR ∩Ω and ∂ΩC ∩Ω. The formulation is derived in more detail in Section 5.

For discretizing the variational equation (7), we use a standard Galerkin approach. The cou-
pling condition (8) is discretized using a collocation scheme at the coupling boundaries. Since the
patch ΩR has a 1-periodic parameterization, we use isogeometric basis functions based on standard
periodic B-splines to discretize the functions uR0 , vR0 and uRM on ΩR. The functions uC0 , vC0 and uCM
can be discretized using standard B-splines.

3. Constructing a generalized inner offset curve

In this section we provide details on Step 1 of the OODP algorithm, constructing a generalized
inner offset curve. In Section 3.1 we present an algorithm to construct the curve, as given in (3),
from a given boundary curve and quasi-normal vector along the boundary. In Section 3.2 we study
the performance of the algorithm on several examples. Moreover, we consider the dependence of
the algorithm on its parameters. In Section 3.3 we discuss the construction of suitable quasi-normal
vectors.

3.1. The generalized offsetting algorithm

In the following we propose an algorithm to find, for any given, 1-periodic boundary curve CB

and quasi-normal vector q, a generalized inner offset curve CO, such that the resulting ring-shaped
patch F̃ is regular and smooth. In Remarks 4 to 6 we discuss the influence of the parameters which
are used in the algorithm. If the parameters are selected properly, the patch parameterization F̃ is
regular.

The generalized offsetting algorithm needs as input a

7



• 1-periodic boundary curve CB,

• 1-periodic quasi-normal vector q to CB,

• offsetting parameters 0 < c < 1, 0 < d, and

• regularization parameters α ≥ 0 and β ≥ 0.

The steps of the algorithm are give by:

1. Compute

µmax(t) =

{
[C′B(t),q(t)]

[q(t),q′(t)]
if 0 < [q(t),q′(t)]

∞ otherwise,
(9)

for all t ∈ [0, 1[. Here we denote by [v,w] the determinant of the 2× 2-matrix (v,w).
2. Set µtarget(t) = min{c · µmax(t), d}.
3. Find µ ∈ Sph minimizing the quadratic energy functional

‖µ− µtarget‖2
L2([0,1]) + α‖C(1)

O ‖
2
L2([0,1]) + β‖C(2)

O ‖
2
L2([0,1]) → min (10)

where C
(i)
O denotes the i-th derivative of CO.

4. If the resulting generalized offset curve CO is simple and orientated counter-clockwise, the
algorithm terminates. Otherwise, shrink one of the parameters d, h, α or β and repeat steps 2
to 4.

The following theorem states that µmax gives an upper bound on the offsetting distance µ.

Theorem 2. Assume that the patch parameterization F̃ is given as in (4) where CB is a 1-periodic,
counter-clockwise oriented, simple curve and q is a corresponding quasi-normal vector. Moreover,
assume that µ is a 1-periodic and continuous function. If for all t we have 0 < µ(t) < µmax(t),
where µmax is defined as in (9), then the parameterization F̃ is regular.

Proof. See Appendix A.

Lemma 3. Let α = β = 0. Then there exists an h > 0 and a d > 0, both sufficiently small, such
that the algorithm terminates.

Proof. This is a direct consequence of Theorem 2.

For non-zero regularization parameters, the algorithm may not terminate. In practice, we
progressively shrink d by setting d′ = s · d, with s ∈ ]0, 1[ fixed. If the algorithm does not yield a
simple, counter-clockwise curve, we decrease the value of the regularization parameters (usually by
a factor of 10). The goal is to find a quasi-normal vector and regularization parameters such that
the resulting ring-shaped patch covers a large part of Ω.

In the following we discuss the choice of parameters in the generalized offsetting algorithm.
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Remark 4. The distance between the outer and the inner curve depends on the choice of the
constants c and d. When the constants are smaller, the curve CO is closer to the boundary CB.
Here, the goal is to make the ring-shaped patch as wide as possible. On the other hand, if c is close
to one, the patch parameterization is almost singular. Therefore, in practice, we set c = 1

2
. If d is

too large, the offset curve may not be inside the boundary curve. This issue is resolved by Step 4
of the algorithm.

Remark 5. The shape of the resulting ring-shaped patch depends strongly on the regularization
parameters α and β and the choice of the constants c and d. If c and d are small enough and
α = β = 0, then the parameterization is regular. However, nonzero values of α and β often give
better results.

Remark 6. In Step 3 of the algorithm we assume µ ∈ Sph. The choice of the underlying spline space
has an effect on the shape and smoothness of the resulting ring-shaped patch. Hence, selecting a
higher degree and/or more refined spline space may improve the results.

In the following we consider several examples to show how we can create suitable parameteri-
zations using the generalized offsetting algorithm.

3.2. A study of the dependence of the generalized offsetting algorithm on its parameters

We use the generalized offsetting algorithm to obtain a suitable ring-shape parameterization
from several given boundary curves. In Example 1 the function q is chosen to be the normal vector.
This does not always result in a satisfactory parameterization, as can be seen in Example 2. Hence,
a suitable quasi-normal vector to the outer curve needs to be defined. In Example 3 we consider a
star-shaped domain and we discus the importance of the choice of q to obtain a regular ring-shape
patch of sufficient width. In Section 3.3, we discuss how to improve the choice of q (locally) for a
given boundary curve. This is considered in Example 4.

Remark 7. In the following examples, we assume that the function µ is a periodic B-spline of
degree three. The size h of the spline space for µ is set to 0.02 for all the examples.

Example 1. We consider the peanut-shaped curve C1
B, which is shown in Figure 2a. In Figure 2b

we show the resulting patch parameterization where the function q is the normal vector nB to the
curve C1

B and α and β are set to zero. In Figure 2c the resulting parameterization is depicted for
when we set q = −C1

B. This is a valid choice, since the domain is star shaped with respect to the
origin. The patch parameterizations in Figures 2d and 2e are obtained for α = 10−7 and β = 10−7,
respectively. As one can see, having β > 0 yields a smoother parameterization for q = nB. In this
case, the choice q = −C1

B as in Figure 2c yields the largest patch, which can be most easily covered
by a multi-cell domain.
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(a) Peanut-shaped curve C1
B .

-5 5

-5

5

(b) d = 1, c = 1, α = β = 0 and q = nB .

-5 5

-5

5

(c) d = 2
3

, c = 1, α = β = 0 and q = −C1
B .

-5 5

-5

5

(d) d = 3, c = 1, α = 10−7 and q = nB .

-5 5

-5

5

(e) d = 3, c = 1, β = 10−7 and q = nB .

Figure 2: Different parameterizations of a domain inside a peanut-shaped curve C1
B . Note that in this figure (and in

the following) the mesh is given for visualization purposes and does not correspond to the underlying Bézier mesh.
Here nB stands for the normal vector to the outer curve.
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Example 2. In this example we consider a curve C2
B shaped like planet B-612, as shown in

Figure 3a. The curve is named in reference to [34]. In Figure 3b we visualize the resulting patch
parameterization for q = nB, µtarget = min{1

2
, 1

2
µmax} and α = β = 0. One can see that the

parameterization has self-intersections. Therefore, we set µtarget = min{1
5
, 1

2
µmax} with α = β = 0

in Figure 3c and β = 10−6 in Figure 3d. The resulting parameterization in Figure 3d does not
have any self-intersections, but one part of the patch is very slim. In this case, it is not possible to
cover the hole with a multi-cell domain, without having a very small mesh size. Hence, we need to
define a different function q, such that the resulting parameterization becomes wider. For this aim,
instead of q being the normal vector, we define q = −C2

B. This is a valid quasi-normal vector, since
the curve is star-shaped with respect to a ball at the origin. The result is illustrated in Figure 3e.
In this case, covering the hole is easily possible.

Example 3. We consider the star-shaped boundary curve illustrated in Figure 4a. Here, we
compare the parameterizations resulting from different choices of q and different choices for the
parameters α and β. The results using q as the normal vector are illustrated in Figures 4b and 4d.
The results using a more general quasi-normal vector (the normal vector of a circle (nC)) are
depicted in Figures 4c and 4e. As remarked earlier, the quasi-normal vector yields better results.
Moreover, having β > 0 yields a smoother patch parameterization.

3.3. A discussion on constructions for the quasi-normal vector q

The goal of this section is to obtain a smooth quasi-normal vector for a boundary curve with
fine details, as illustrated in Figure 5a. Such a quasi-normal vector can be computed as the normal
vector of a smoother curve as it is shown in blue in Figure 5b. To this end we go through the
following steps, given a boundary curve CB:

• We approximate CB by a smoother curve CS, see Figures 5a and 5b.

• We compute the normal vectors nB and nS to the curves CB and CS, respectively.

• If, for each t, the normal vector nS(t) is a valid quasi-normal direction at CB(t), we set
q(t) = nS(t).

• If this is not the case, we repeat the process with another approximation C∗S with ‖n∗S−nB‖ <
‖nS − nB‖.

For a better understanding we present the following example.

11



-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

(a) Planet B-612 curve C2
B .
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(b) d = 1
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, c = 1
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, α = β = 0, and q = nB .
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(c) d = 1
5

, c = 1
2

, α = β = 0, and q = nB .
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(d) d = 1
5

, c = 1
2

, β = 10−6, and q = nB .
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(e) d = 1
2

, c = 1
2

, α = β = 0, and q = −C2
B .

Figure 3: Different parameterizations of a domain inside the curve C2
B shaped like planet B-612.
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(a) Star-shaped curve.
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(b) d = 1
9

, c = 1
2

, q = nB , and α = 3 × 10−9.
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(c) d = 1, c = 1
2

, q = nC , and α = 9 × 10−3.
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(d) d = 1
9

, c = 1
2

, q = nB , and α = 3 × 10−9.
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1.0

(e) d = 1, c = 1
2

, q = nC , and α = 9 × 10−5.

Figure 4: Applying the generalized offsetting algorithm on a star-shaped boundary curve. nB stands for the normal
vector of the outer curve.
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Example 4. We consider the boundary curve CB shown in Figure 5a. Moreover, in Figure 5b, the
boundary curve CB is depicted together with a regularized, smoother curve CS. The corresponding
normal vectors are denoted by nB and nS, respectively. The curve CS is an approximation of
CB, having fewer geometric details. In Figures 5c and 5d we depict the parameterizations where
q is chosen to be q = nB (left) and q = nS (right). In the latter case, the resulting patch
parameterization is regular, and without any self-intersection. Moreover, the hole in the middle
can be covered easily using a multi-cell domain.
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-0.5
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(a) The given boundary curve CB .
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(b) CB plotted together with the smoother
curve CS .
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(c) d = 2
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, q = nB , and α = 10−7.
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(d) d = 2
5

, c = 1
2

, q = nS , and α = 10−7.

Figure 5: Constructing a quasi-normal vector using a smooth approximation of a given boundary curve.

4. Treatment of corners on the boundary

In this section, we consider boundary curves with corners, both convex and non-convex. See
Figure 6 for a visualization. We explain how to extend the generalized offsetting algorithm to
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such curves. The algorithm yields a set of patches for each curve segment and each corner. The
collection of patches can then be interpreted as a single ring-shaped spline manifold.

•
t1

•
t2

•t3

•
t4

Figure 6: An example of a boundary curve CB with corners.

We assume to have given a 1-periodic curve CB ∈ (Sph)
2 with corners ti, for 1 ≤ i ≤ n. Each

corner corresponds to a knot of multiplicity p. The corners split the curve into segments CB,i with
t ∈ [ti−1, ti], i.e.,

CB,1(t) : t ∈ [t1, t2]
CB,2(t) : t ∈ [t2, t3]
...
CB,n(t) : t ∈ [tn, t1 + 1].

(11)

We assume that no segment CB,i contains any additional corners, i.e., CB,i ∈ C1([ti, ti+1]) and
‖CB,i‖ > 0. To obtain a ring-shape parameterization for such a curve we need to go through the
following steps, which are also visualized in Figure 7:

• For each segment CB,i we define a corresponding parameter interval XF
i , with

XF
i =


[ti + δ, ti+1 − δ] if both ti and ti+1 are convex,
[ti + δ, ti+1] if ti is convex and ti+1 is non-convex,
[ti, ti+1 − δ] if ti is non-convex and ti+1 is convex,
[ti, ti+1] if both ti and ti+1 are non-convex.

We restrict the spline space Sph to XF
i , which is denoted by Sph|XF

i
. We have given a quasi-

normal vector qi for each segment CB,i. The quasi-normals are not continuous at the corners,
i.e., in general qi−1(ti) 6= qi(ti).
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• If ti is a convex corner, we construct a patch parameterization Pi covering a neighborhood of
the corner as a Coons patch interpolating the boundary curves

Pi(u, 0) = CB,i−1(ti − u · δ)
Pi(u, 1) = CB,i(ti + δ) + u · µi(ti + δ) qi(ti + δ)
Pi(0, v) = CB,i(ti + v · δ)
Pi(1, v) = CB,i−1(ti − δ) + v · µi−1(ti − δ) qi−1(ti − δ).

(12)

• If ti is non-convex, we construct a patch parameterization Pi as a parallelogram from given
quasi-normal vectors qi(ti) and qi−1(ti).

• We apply the generalized offsetting algorithm to the segment CB,i on the parameter interval
XF
i and obtain a parameterization F̃i : [0, 1]×XF

i → R2. Instead of periodicity constraints,
we now have to satisfy continuity constraints to couple with the corner patches.

• We define a local parameterization

Fi(s, t) = CB,i(t) · (1− s) + CI,i(t) · s, s ∈ [0, 1] and t ∈ XF
i , (13)

such that the inner curve satisfies CI,i ∈ (Sph|XF
i

)2.

We visualize the construction in Figure 7, where the corners ti and ti+1 are convex, whereas ti−1 is
non-convex. Hence, we have XF

i−1 = [ti−1, ti − δ] and XF
i = [ti + δ, ti+1 − δ].

•
ti+1

•ti

• ti−1

ti − δ•

ti + δ

•Fi

Fi−1

CB,i

CB,i−1CB,i+1

•

Pi+1

Pi

Pi−1
CB,i−2

qi−2
qi−2

qi−1

qi−1

•

•

•
u

v
t

s
v
u

ts

u
v

Figure 7: A collection of patches (left) and corresponding parameter domains (right).

Remark 8. Note that the inner curves need to satisfy

CI,i(ti + δ) = CI,i−1(ti − δ) (14)

for each convex corner ti. For each non-convex corner ti−1 the angle between qi−2(ti−1) and
qi−1(ti−1) must be greater than zero.
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0
0••

1ti + δ
•

• 1
ti − δ•
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ti
••
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t
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st

(a) Convex corner.

(1, 1)•
u

v

0
0

s
t

s

t

ti−1•
s

t

s
t

(b) Non-convex corner.

Figure 8: Gluing the local patch parameterizations.

Remark 9. The value of δ can be chosen differently for each corner and each direction. Here, for
simplicity, we assumed that δ is the same for all cases.

As output we obtain a ring-shape patch as shown in Figure 7 (left). This domain can be
computed by creating a sequence of patches that are glued appropriately using a manifold-like
structure. The continuity of the corresponding parameter domains is visualized in Figure 7 (right).
Such a configuration can be interpreted as a single spline manifold as defined in [35]. This process
is visualized for convex corners in Figure 8a and for non-convex corners in Figure 8b. For details
on the construction we refer to [36].

5. Overlapping multi-patch formulation and isogeometric discretization

In this section we assume, for simplicity, that the domain Ω is constructed as the union of a
periodic ring-shaped patch ΩR and a rectangular patch ΩC, i.e.,

Ω = ΩR ∪ ΩC.
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As a model problem, we consider a Poisson problem on the domain Ω, with zero Dirichlet boundary
conditions, which can be represented by a variational formulation as follows.

Problem 1. Find u ∈ H1
0 (Ω), such that

a(u, v) = `(v) ∀v ∈ H1
0 (Ω), (15)

where

a(u, v) =

∫
Ω

∇u∇v dξ and `(v) =

∫
Ω

fv dξ. (16)

We adopt the notation and definitions from [2]. For k ∈ {R, C} we define the following extension
operator

Mkv =

{
v on ΓkC
0 on ΓkD,

(17)

where, ΓkC and ΓkD are called the coupling and Dirichlet boundaries, respectively.
For (uR, uC), (vR, vC) ∈ H1(ΩR)×H1(ΩC), we define

A((uR, uC), (vR, vC)) = aR(uR, vR) + aC(uC, vC)

and
L(vR, vC) = `R(vR) + `C(vC),

where

ak(u, v) =

∫
Ωk

∇u∇v dξ and `k(v) =

∫
Ωk

fv dξ, k ∈ {R, C}. (18)

Moreover, we introduce functions uk0 ∈ H1
0 (Ωk), satisfying

uk = uk0 +Mkuk
′
k ∈ {R, C}, (19)

where k′ such that {k, k′} = {R, C}. In [2] it was shown that equation (19) is solvable under mild
conditions on MR and MC. We obtain the following coupled problem.

Problem 2. Find (uR0 , u
C
0) ∈ H1

0 (ΩR)×H1
0 (ΩC) and (uRM , u

C
M) ∈ H1(ΩR)×H1(ΩC) such that

A((uR0 + uRM , u
C
0 + uCM), (vR0 , v

C
0 )) = L(vR0 , v

C
0 ), ∀(vR0 , vC0 ) ∈ H1

0 (ΩR)×H1
0 (ΩC) (20)

uRM −MR(uC0 + uCM) ≡ 0 (21)

uCM −MC(uR0 + uRM) ≡ 0, (22)

where we obtained the coupling constraints (21) and (22) by replacing Mkuk
′

with ukM in (19).
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In the following we summarize the isogeometric discretization of Problem 2. Since ΩR is a
periodic ring-shaped patch and ΩC is rectangular, we use standard periodic isogeometric functions
for the discretization of the functions corresponding to ΩR and standard B-spline basis functions for
the functions corresponding to the rectangular patch ΩC. We assume that GR is a spline geometry
mapping, which is periodic in the first direction, mapping the parameter domain Ω̂R = [0, 1[× ]0, 1[

onto the physical subdomain ΩR, i.e., ΩR = GR(Ω̂R). We assume that the rectangular patch ΩC

has a parameterization GC : ]0, 1[2 → ΩC, with GC ∈ P(1,1). The isogeometric spaces can then be
defined as

V Rh = span
{
ϕ ∈ L2(ΩR) : ϕ ◦GR ∈ Sph,per × S

p
h

}
,

V Ch = span
{
ϕ ∈ L2(ΩR) : ϕ ◦GC ∈ Sph × S

p
h

}
,

(23)

where Sph,per denotes a periodic spline space. We define the interior functions for each subdomain
as

V R0h = V Rh ∩H1
0 (ΩR),

V C0h = V Ch ∩H1
0 (ΩC).

The spaces of coupling functions are defined as follows

V k
ch = span

{
βki ∈ V k

h | i ∈ Ikc
}
⊂ H1(Ωk),with

Ikc =
{
i ∈ Ik | suppβki ∩ ΓkC 6= ∅

}
,

where k ∈ {R, C}. Hence, Problem 2 can be discretized as follows

Problem 3. Find (uR0h, u
C
0h) ∈ V R0h × V C0h and (u1

Mh, u
2
Mh) ∈ V Rch × V Cch such that

A(uR0h + uRMh, u
C
0h + uCMh), (v

R
0h, v

C
0h)) = L(vR0h, v

C
0h) ∀(vR0h, vC0h) ∈ V R0h × V C0h (24)

uRMh −MR
h (uC0h + uCMh) = 0 on ΩR (25)

uCMh −MC
h (uR0h + uRMh) = 0 on ΩC. (26)

In Problem 3, MR
h and MC

h are suitable discretizations of the operators MR and MC. We assume
that the discretized extension operators are collocation-based extension operators (CEO) as defined
in [2, Section 4.4].

6. Numerical experiments

In all numerical experiments we solve the Poisson problem using the OMP method. Except for
Example 5, we always consider the exact solution

u(x, y) = sin(πx) sin(πy). (27)
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The domain parameterizations were created using the generalized offsetting algorithm presented
in Section 3. In Examples 5 and 6 we consider domains with a smooth boundary. In Examples 7
and 8 we consider domains with corners that are convex (inner angle < π) and non-convex (inner
angle > π), respectively.

Example 5. The peanut shaped domain, illustrated in Figure 9a, is constructed as a union of
two overlapping patches. The boundary curve is composed of four segments that meet C0 and the
resulting ring-shaped patch is parameterized by periodic quadratic B-spline basis functions. The
hole is covered with a multi-cell domain. We employ the following exact solution

u(x, y) = sin(x) sin(y).

In Figures 9b we plot the numerical solution for a total of 1080 DOFs and using quadratic B-splines.
L2 and H1 errors are shown in Figure 9c. According to the numerical results, the convergence rates
of errors are optimal.

Example 6. We consider the domain from Example 4. The parameterization of the ring-shaped
patch is the one depicted in Figure 5d. The ring-shaped patch is parameterized by periodic cubic
B-splines. The resulting OMP representation is depicted in Figure 10a.

We show the numerical solution for a total of 2263 DOFs and using cubic B-splines, in Fig-
ures 10b. The L2 and H1 errors for discretizations of degree p = 3 and p = 4 are shown in
Figure 10c. All convergence rates are optimal.

Example 7. We consider a heart shaped domain, which is illustrated in Figure 11a. In this
example, the geometry is a non-convex domain with a corner near the top. The construction of the
ring-shaped patch is done as explained in Section 4. The ring-shaped subdomain is parameterized
with quadratic B-splines.

The numerical solution for a total of 1460 DOFs and using quadratic B-splines is illustrated in
Figures 11b. L2 and H1 errors are shown in Figure 11c. The convergence rates of all errors are
optimal.

Example 8. The drop shaped domain illustrated in Figure 12a, is composed of two overlapping
patches. The geometry is convex with a corner on the top. The ring-shaped part is constructed
with quadratic B-splines according to the strategy in Section 4.

In Figures 12b we show the numerical solution for a total of 1460 DOFs and using quadratic
B-splines. L2 and H1 errors are shown in Figure 12c. The observed convergence rates of all errors
are optimal.
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(a) Peanut shaped domain.

(b) Local solutions (left and center) and local solutions plotted together (right).
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(c) L2 (left) and H1 (right) errors for p = 2, 3, 4.

Figure 9: Numerical results for solving the Poisson problem on a peanut shaped domain.
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(a) Domain with a random smooth boundary.

(b) Local solutions (left and middle) and all local solutions plotted together (right).
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(c) L2 (left) and H1 (right) errors for p = 3, 4.

Figure 10: Numerical results for solving the Poisson problem on the domain with a random smooth boundary.
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(a) Heart shaped domain.

(b) Local solutions (left and middle) and all local solutions plotted together (right).
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(c) L2 (left) and H1 (right) errors for p = 2, 3, 4.

Figure 11: Numerical results for solving the Poisson problem on a heart shaped domain.
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(a) Drop shaped domain.

(b) Local solutions (left and middle) and all local solutions plotted together (right).
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(c) L2 (left) and H1 (right) errors for p = 2, 3, 4.

Figure 12: Numerical results for solving the Poisson problem on a drop shaped domain.
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7. Conclusion

In this paper, we proposed an offset-based overlapping domain parameterization (OODP)
method for IGA. In this method we generate an inner offset curve from a given regularly param-
eterized boundary curve by solving a regularized optimization problem. We penalize first and/or
second derivatives to make the curve as smooth as possible. From this inner curve and the given
outer curve we obtain a ring-shaped patch with a hole. This hole is then covered with a multi-cell
domain.

We study the influence of the parameters in the proposed algorithm via several numerical
examples. We show that using a quasi-normal vector, instead of the exact normal vector, for
defining the inner offset curve in the algorithm generates a better parameterization for most of
the considered cases. In addition, we apply the algorithm to boundary curves with convex and
non-convex corners and we explain how the method can handle such cases.

Finally, we use the OMP method as introduced in [2] to solve PDEs on the proposed domain
parameterizations. Note that in the numerical experiments we mostly cover the hole with simple
rectangular subdomains. Such a covering is recommended since it allows for a more straightforward,
more efficient implementation.

The OODP method can be applied to a wide range of given boundary curves in 2D. As we have
demonstrated, it is always possible to cover complex domains with pairwise overlapping subdomains.
However, in many cases, the parameterization strategy becomes more straightforward if we allow
to have multiple overlaps (where three or more subdomains are overlapping). Therefore, for solving
a PDE on such parameterizations, the OMP method, which is defined for pairwise overlaps, needs
to be extended to configurations having multiple overlaps. We intend to extend the method in such
a way in the future.

Even though we only consider B-spline parameterizations in the numerical examples, the pro-
posed method is also applicable for NURBS boundary curves. In principle the OODP method can
be generalized also to 3D domains. However, this extension is more complicated, as there are many
possible configurations of boundary surfaces, which are in general given as trimmed B-spline or
NURBS patches. Therefore, the parameterization of 3D domains needs further research.
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Appendix A. Proof of Theorem 2

Proof. The parameterization F̃ is given as in (4), where

CB = (C1(t), C2(t)) and q(t) = (q1(t), q2(t)). (A.1)

We have that F̃ is regular, if the Jacobian determinant of the mapping is always negative. We
obtain

∂F̃(s, t)

∂s
= µ(t)q(t) and

∂F̃(s, t)

∂t
= C′B(t) + s(µ′(t)q(t) + µ(t)q′(t)), (A.2)

Therefore, the Jacobian matrix of F̃(s, t) can be written as follows

J =
(
µ(t)q(t) C′B(t) + s(µ′(t)q(t) + µ(t)q′(t))

)
. (A.3)

We denote the determinant of J by det(J) = [J ] = D. In the following we obtain

D = µ(t)[q(t),C′B(t)] + (µ(t)sµ′(t)) [q(t),q(t)]︸ ︷︷ ︸
=0

+sµ2(t)[q(t),q′(t)]

which should be negative for all s ∈ [0, 1]2 and for all t ∈ R, i.e.,

µ(t)[q(t),C′B(t)] + sµ2(t)[q(t),q′(t)] < 0. (A.4)

Equation (A.4) is linear with respect to s. Hence, it suffices to satisfy the equation for s = 0 and
s = 1. For s = 0 and we obtain

µ(t)[q(t),C′B(t)] < 0,

Since [q(t),C′B(t)] is negative, we need µ(t) > 0. For s = 1 we get

µ(t)[q(t),C′B(t)] + µ2(t)[q(t),q′(t)] < 0,

or
µ(t)[q(t),q′(t)] < −[q(t),C′B(t)].

If
[q(t),q′(t)] > 0

we obtain

µ(t) <
[C′B(t),q(t)]

[q(t),q′(t)]
. (A.5)
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On the other hand, if
[q(t),q′(t)] ≤ 0

we have
µ(t)[q(t),q′(t)] ≤ 0 < −[q(t),C′B(t)]

which is satisfied for all t. This completes the proof.
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