Filling Holes in Point Clouds

Pavel Chalmoviansky!, Bert Jiittler?

! Johannes Kepler University, Spezialforschungsbereich SFB 013
Freistadter Str. 313, 4040 Linz,
Pavel.Chalmoviansky@Qjku.at,

http://fractal.dam.fmph.uniba.sk/~chalmo
2 Johannes Kepler University, Dept. of Applied Geometry,
Altenberger Str. 69, 4040 Linz,
bert. juettler@jku.at,
http://wwu.ag. jku.at

Abstract. Laser scans of real objects produce data sets (point clouds)
which may have holes, due to problems with visibility or with the optical
properties of the surface. We describe a method for detecting and filling
these holes. After detecting the boundary of the hole, we fit an alge-
braic surface patch to the neighbourhood and sample auxiliary points.
The method is able to reproduce technically important surfaces, such as
planes, cylinders, and spheres. Moreover, since it avoids the parameter-
ization problem for scattered data fitting by parametric surfaces, it can
be applied to holes with complicated topology.

Keywords. Reverse engineering, scattered data, algebraic surface fit-
ting, meshless methods

1 Introduction

Since the advent of advanced laser scanners, even complicated objects can be
digitized with impressive accuracy. This led to the technology of reverse engineer-
ing [18], which has been developed into a valuable alternative to the traditional
top—down construction process in CAD. Instead of designing a CAD model from
scratch, the model is (semi-) automatically created from the cloud of measure-
ment data.

The data acquired by the scanning device, however, may have various prob-
lems. For instance, some parts of the objects can be missing, due to problems with
accessibility /visibility, or due to the special physical properties of the scanned
surface (e.g. transparentness, reflectivity, etc.). This produces holes in the data
set, which do not correspond to any holes in the object (cf. [5,17]).

There are several possible ways to address this problem. For instance, one
may try to combine several views, i.e., several scanned point sets of the same
object. As another approach, the holes can be filled with auxiliary, artificially
generated points. The latter approach will work also in regions where the object is
difficult to scan, due to visibility and/or optical properties. Also, it can be used
even if the problems have not been realized immediately during the scanning
process.

5
i

it
i
Rl
A
S
SEE
£ i
R

FEHL
e

R
o

A
ey
Gl

i

+
:

&
S

o
o
4
i,
R
B

oty

,
"
"
i
K

Fig. 1. Left: babyphone data, generated by a 3D Laser scanner. Right: tennis
ball data (artificially generated).

In this paper, we use algebraic surfaces for filling the hole by generating
auxiliary points. After detecting the hole, a surface is fitted to the neighbourhood
of its boundary. The method is able to reproduce spheres, planes and circular
cylinders. Finally, by sampling points from the part of the algebraic surface
which corresponds to the hole, the missing points are constructed.

This paper is organized as follows. The next section describes basic notions
and facts used throughout the paper. Section 3 summarizes the algorithms for
estimating normals associated with the points. Techniques for detecting bound-
ary points and for constructing polygonal boundaries for the holes are outlined
in section 4. Section 5 describes the algebraic surface fitting. The sampling pro-
cess used for generating the new points is introduced in section 6. Finally, we
conclude this paper. Technical details can be found in the appendices.

2 Preliminaries

The data generated by the scanner form a set P = {py,...,pn} C R3, where
N € Z is the number of points. Typically, IV is in the order of tens of thousands
for objects of a size of coffee mug, see Figure 1.
For the convenience of the reader, we summarize some facts about the Bern-
stein-Bézier representation of trivariate polynomials (see [6] for more details).
Let v; € R® for i € {0,1,2,3} be four non-coplanar points with coordinates
vi = (vi1,v2,v;3) . They span a simplex V = A(vo, v1, v2,v3). Hence, each

point p € R? can be expressed as a unique linear combination

3 3
p= Zpivi with Zpi =1L 1)
i=0 1=0

The quadruple p = (po,p1, P2, p3) are the barycentric coordinates of the point p
with respect to the simpler V. They can be computed from

- [v07"'a{viap}7"'7v3]

, for ¢€4{0,1,2,3 2
’ [Vo, V1, V2, V3] { } @)
with
1111
_ @ by e dy
[a7b7c7d] - as b2 Ca d2 ’ (3)
as b3 C3 d3
where [vo,...,{vi,P},...,vs] indicates that we replace the column containing

the Cartesian coordinates of the point v; with those of the point p.
Leti= ('io,il,iz,i3) € Zi, X = (.’L‘o,ml,.’Ez,.Z‘g) € R* and |i| =i4g+141+1i2+13.
The Bernstein-Bézier polynomials of degree n are

B0 = ()& = i elalialal @
for all i such that, |i| = n. Clearly, such a polynomial is homogeneous in the
barycentric coordinates. It is well known that the {Bf*(x): |i| = n} form a basis
of the linear space IT,(R®) of all trivariate polynomials of degree n.

Let f € IT,(R%) be a trivariate polynomial of degree n. After introducing
barycentric coordinates for its argument and homogenization, f can be uniquely

written as
fx)= > Brx)b, (5)
lil=n

where the b; € R are called the coefficients of the polynomial f(x).

The derivatives of the polynomial f and their expression in the Bernstein-
Bézier basis can be easily calculated using the polar form of the polynomial. This
concept from multilinear algebra was introduced by L. Ramshaw to geometric
modeling as the blossoming principle (see [11] and, more recently, [12]). See
appendices A and B.

3 Normal estimation

This part is devoted to the estimation of normals for each point of a given point
cloud. The normals are used later during the patch fitting (see section 5). We
estimate the normal using the plane of regression for certain neighborhood of
each points in the data set.

We assume that the set P of points is uniformly distributed on the surface of
the solid.? The estimation of normals from scattered data is a standard technique
for data processing (see [7,9]). The algorithm is as follows.

Algorithm 1 (Normal estimation)

1. Find all points within a certain neighbourhood of each point p; € P.
2. Estimate the direction of the normal n; for p; via PCA (see below).
3. Orient the generated normals n; consistently, via region growing.

The three steps will now be discussed in more detail.

Step 1. The neighbourhood of each point p; € P consists of the k nearest
neighbours in the data set,

P; = {pio,---,Pik—1} (6)

It can be computed using suitable algorithms from computational geometry, such
as hashing and kD-trees, see [14]. We suppose that p;o = p; and the points in
P; are sorted by ascending distance to the point p;.

Step 2. The estimation of the unit direction n; of the normal, relies on Principal
Component Analysis (PCA) applied on the above computed neighbourhood P;
of the point. Let

1 k—1
a; =4 > pij (7)
=0

be the centroid of the neighbourhood P;. Consider the quadratic form

k—1

g(x) = (x—a;) " Q(x—a;) with Q= Z(Pi,j —a)(pij—a;) . (8)

=0

The eigenvector of) which is associated with the smallest eigenvalue is used
as an estimate of the normal. It can be shown to be the normal of the plane of
regression of the points P;. The normal is normalized in order to obtain a unit
vector. In the sequel, we will often refer to the estimated normal at p; shortly
as the normal at p;.

Step 3. The estimated normals may not be oriented consistently, since normals
at neighbouring points may have different orientations (cf. Figure 2). We use a
region—growing—type algorithm for generating a consistent orientation via sys-
tematic reorientation (“swapping”) of the normals. It is based on the quantity

cos v = (nj, nj) 9)

which is compared with a given threshold. As an example, we applied this tech-
nique to the tennis ball data, see Figure 2.

3 More precisely, we assume, that the eigenvalues calculated during the PCA are well
separated.

Fig. 2. Inconsistent(left) and consistent(right) orientation of normals

Clearly, the estimated tangent plane of the original surface at a point p; has
the equation

(x—pi,n;) =0 (10)

Implementation issues. In order to define the neighbourhood of a point p;, we
used all points within a ball of a certain constant radius, and among those we
picked the k = 35 closest ones. Note that the number of points in the neighbour-
hood might be smaller than k, especially in regions with a low sampling rate. It
is recommended either to use advanced techniques of computational geometry
for larger sets P to find the k nearest neighbours, or to split the input data into
smaller subsets whenever possible.

Currently, our region-growing algorithm for orientation is a semi-automatic
one, requiring some user interaction (e.g., adjusting the threshold). For all our
examples it worked without problems.

4 Constructing boundaries

Boundary detection for triangulated point clouds is well understood. In this
paper, however, we describe a meshless method, which does not assume the
existence of a triangulation.*

The detection of boundaries in the discrete set of points is a subtle issue,
which strongly depends on measurement errors in the point cloud and the dis-
tribution of the points. It consists of two major steps:

Algorithm 2 (Boundary building)

1. Detect the candidate boundary points.
2. Construct boundary polygons from boundary points.

4 Although methods for triangulations of point clouds have recently made some
progress, they are still difficult and computationally expensive. Also, they may not
give the desired results, especially for complicated and/or noisy data. Therefore,
meshless methods are a valuable alternative [15].

Step 1. The points on the boundary of the set P are characterized by a having a
bigger distance from the centroid of their neighbourhood than the points within
the inner part of the surface, see Figure 3. Consequently, the first criterion for

.o . . ++
P e T T L +++
++++ e o e e a8 e e @ +++
++ 0+t - .o +Pe
T + +++
++ + ++ . . +++
. + ++ e +

"""D +

++++ +
o+ ++

Fig. 3. Points and centroids in a point cloud for inner (left) and boundary
points (middle and right). The crosses indicate the closest neighbors
of the big black dot. The centroid is shown as a square.

the boundary points is
lpi — aill > enaist (11)

for an appropriate threshold epqist- Let Pg C P be the set of all such points
in P.

More sensitive criteria can be constructed based on the use of higher mo-
ments. This has recently been explored for feature detection [3]. Other informa-
tion about the local behaviour of the point cloud can be obtained by analyzing
the distribution of the eigenvalues of the matrix (8).

According to our experience, the criterion (11) works reasonably well to gen-
erate candidate points both for points on boundary and at sharp edges of the
object. A finer classification can then be obtained by a local analysis in the
estimated tangent plane (10), as follows.

Consider the neighbourhood P; of a boundary point p;. In addition to p;, it
contains the points {p; 1, - .., Pikr—1}. By projecting it into the estimated tangent
plane T, (S) we get the points

R={I‘1,...,I‘k_1}. (12)
Let
wp, (r1,1;) = wedge(r;pir;) (13)
be the wedge spanned by points r; and r; with the apex p;, and

n;a_x{éwpi (ry,rj): intwp, (r;,r;) NQ =0} (14)

)

be the biggest angle of all those wedges which do not contain any other point
from R (see Figure 4, left).

In the limit, if the neighbourhood became infinitesimal small, and the sam-
pling density were arbitrarily high, the angle would be equal to « for all regular
points on the boundary. For regular points in the inner part, the corresponding
limit is zero.

bi;

S y
-7 bi,_, ¥

/
LV AN ,~ forbidden directions

Fig. 4. Left: the maximal angle between the consecutive points. Right:
boundary polygon construction. The colored wedge zone is for-
bidden for the next point c;41.

In order to detect the boundary points p; among the candidate points Pg,
we use the following test:

e Project the neighbouring points orthogonally into the local plane of regres-
sion (the estimated tangent plane) Tp,,.

e Sort them according to the polar coordinates around the point p;.

e Calculate the (oriented) angles of the wedges spanned by any two consecutive
points with apex at p; (see Figure 4), left. Let a; be the maximum of these
angles.

e Delete the point p; from Pg if a; < ag, where o is a user—defined threshold.

Clearly, this test will also delete vertices of the boundary curve with sharp inner
angles. This, however, is not a problem for the hole filling application. The
complexity of this algorithm is O(Nklogk).

Step 2. Now we are ready to find the boundary polygons. For the sake of sim-
plicity, we first suppose that there are no sharp edges (no singular points and the
curvature has an upper bound) along the boundary of the surface. (Such points
are handled by glueing together several branches of the boundary polygon.) We
use the following greedy algorithm:

Assume the set B = {by,...,b,} contains all boundary points of set P.
Points of B which are not in any constructed polygon are called free.

e Take a free point b;, and its closest free neighbour b;, from B.

e Extend the polygon by adding the nearest free point from B which belongs
to the allowed wedges as shown in Figure 4, right. The polygon is allowed
to grow in both directions.

e If there is no point to extend the polygon, or if the polygon is already closed,
start another one until all the points in B are used up.

This algorithm produces the set of polygonal boundaries. If the boundary of
a hole makes sharp turns, then the method will produce different polygonal
segments, one for each edge. In this case, one has — as a postprocessing step —
to glue the different segments together.

Clearly, the complexity of this step is O(¢?). An example of the whole process
is shown in the Figure 5.

Fig. 5. Building the boundary of a hole in scanned data set

Unfortunately, there is no guarantee of the topological correctness for the
boundary obtained by this algorithm. The result strongly depends on the dis-
tribution of the points and errors in P. Topologically correct solutions could
be guaranteed by using so—called “snakes” (active curves) from computer vision
[10]. These techniques, however, always need an initialization, which has to be
provided by the user. Also, since we do not assume that the given data are tri-
angulated, the rules for the evolution of a “snake” on a point cloud are not fully
obvious. Still, this method may have some potential, and we intend to look into
it in the future.

Implementation issues. Several user—defined parameters appear in the above
algorithms. They strongly depends on statistical characteristics of the set P such
as the average distance of closest neighbours, curvature bounds of the scanned
surface, etc. They can be locally adapted according to these parameters.

The parameters are estimated according to statistical properties. The pa-
rameter epgist 1S set to a quarter of the average distance of the closest neighbour
in the set. The parameter epangle € [—1,1] was chosen equal to —0.5 in our
examples. It controls the size of the feasible wedge during the boundary point
detection.

Note that “outliers” on the boundary of a hole may sometimes not be de-
tected as boundary points, since its neighbourhood may not contain sufficiently
many points to get reliable estimates. However, outliers have never been a prob-
lem for the further processing, and it may sometimes even be better to ignore
them.

5 Algebraic surface fitting

The fitting of algebraic surfaces to given data have been discussed in several
publications, see [9] and references cited therein. The method in [9] can be used
to solve the following problem:

Consider a set of points {qo, ..., q,} inside a tetrahedron A(vovivavs). Let
n; be a unit vector (representing the normal) associated with every point q;.
Find an algebraic surface of degree n matching simultaneously the points and
the associated normal vectors.

Considering simultaneously points and associated normals has two major ad-
vantages. First, the solution can be found by solving a linear system of equations.
(Other methods require solving an eigenvalue problem instead [16].) Second, the
use of the normals helps to keep unwanted branches away from the region of
interest, since the resulting surface can be expected to be regular in the neigh-
bourhood of the data. (Alternatively, regularity can always be achieved by adding
suitable “tension terms” to the objective function, or by imposing monotonicity
conditions or sign conditions, see [2]. While the first approach tends to “flatten”
the shape, the second one requires more sophisticated solvers.)

We represent the algebraic surface as the zero set of a polynomial f of degree
n in Bernstein-Bézier form over a simplex V, see (5). The simplex V is chosen
such that it contains the given points.

In order to fill the hole(s) in the data, we want to extend the shape of the
point cloud according to the shape of the vicinity of the boundary. Thus, in order
to match the boundary data by a surface

S={xeV: f(x) =0}, (15)

we take into account not only the points of P from the detected boundary
polygon @, but also the points in a certain tubular neighbourhood N(Q). The
tubular neighbourhood is approximated by a union of balls,

r

N(Q) = U B.,... (qi)a (16)

=0

where B (p) is the ball centered at p with radius ¢ (see Figure 6).

To each point we assign the weight u; for ¢ € {0,...,r}. It is proportional to
number of balls B, ,.(q;) in (16), which contain the point q;. For points further
away from the hole, this weight decreases. As another possibility, one may choose
these weights p; according to the distance d(p;, @) from the boundary polygon
Q. Clearly, this is more expensive to compute.

10

Fig. 6. Tubular neighbourhood of a boundary

The objective function has the form

F(b) = woD(b) + wi N(b) + wsT1(b) { +wsTa(b) } (17)
where
D(b) = ;Nkf(Qk)Qa (18)
NE) = gukanw —nl?, (19)
Ti(b) = /_V P+ P2+ R+ 202+ 205 + 20, (20)
T8 = [frowt oot £V (21)

and b = (b;) ;= are the coefficients in (5) and wo,w;, w2, ws € Ry are constant
weights. The term T3 (b) (Tz(b)) is a “tension term”, which can be used to pull
the solution towards a plane (quadric surface). It should be used only if it is
needed for avoiding singularities (unwanted branches of the algebraic surface).
Otherwise, one may set w2 = 0 (w3 = 0). Clearly, the value of the tension term
also depends on the shape of the simplex V.

Since the objective function is a quadratic positive definite function of the
coefficients b, we can find its minimum by solving the linear system

VF(b) =0. (22)

The resulting formulas have been gathered in Appendix C.

As an example, we applied the fitting procedure to the upper part of the
babyphone point cloud (see Figure 1, left), in order to fill it with an algebraic
surface of degree 4. The choice of the degree is a useful compromise between
flexibility and number of degrees of freedom (shape parameters). According to
our experience, degree 4 was sufficient in most cases. The part of the surface
corresponding to the inner part of the hole is shown in Figure 7. It was produced
with the weights wo = 1000, wy = 550.0 and wy = 1.0.

11

Fig. 7. Fitting a surface to the boundary data of the upper hole in the
babyphone data set.

Remark 1. If the weight wy # 0, then the algebraic surface fitting reproduces
planes. If wy = 0, but ws # 0, then it reproduces spheres and circular cylin-
ders. Indeed, if both the points and the associated normals are sampled from
an algebraic surface, whose gradients have the same length everywhere, then
this algebraic surface is the unique minimizer of the objective function. Clearly,
planes, circular cylinders and spheres enjoy this property. Other quadrics (such
as cones, ellipsoids, etc.) are therefore generally not preserved.

Remark 2. If n > 4 and we = w3 = 0, the data the data taken from a sphere
(or circular cylinder) produces a singular system (22), since any product of the
equation of the sphere (or cylinder) with a cocentric sphere (or coaxial cylinder)
would be a solution.

For holes with more complicated geometry, it is necessary to use algebraic
spline surfaces (instead of single patches), and/or to split the data.

6 Generating the points

In order to finish the filling of the hole, we need to generate sample points
from the surface, which has been fitted to the boundary data. Clearly, we need
only points from the “inner part” of the hole. More precisely, let S C R® be
an algebraic surface (or a part of it) defined by the equation f(x) = 0, with a
chosen orientation. Let c¢: [0, 1] — S be a positively oriented simple closed curve
on the surface S. We have to find a finite subset of points P’ C S such that all
points are inside the region of S enclosed by the curve c.

Our algorithm is based on a triangulation of the surface S, and on approxi-
mate geodesic offsets of the boundary curve c.

12

Algorithm 3 (Generating the points)

1. Approximate the given surface S in region of interest by a triangulation 7.

2. Project the curve ¢ onto the triangulation and find the region R C T en-
closed by the projected curve.

3. Generate a set Pr of points in the R and compute the set Ps of their
corresponding footpoints on S.

4. Choose a uniform subset of Ps by geodesic offsetting, in order to get P’.

Step 1. We have used the algorithm of “marching triangles”. The global strategy
can be found in [1]. In general, this algorithm provides relatively nice triangula-
tions; no post-processing is needed.

The original algorithm had to be modified in order to avoid thin triangles
during the approximation as far as possible. Similarly, the final phase of the
algorithm (“connecting the cracks”) has been improved.

Step 2. The polygon cgc; . .. ¢, which approximates the boundary curve c is pro-
jected onto the triangulation 7. We detect all triangles of 7 which are enclosed
by the projected boundary curve; they form the domain R.

Step 3. The generation of the points on the R and the their projection back to
the S is straightforward. Since the triangles have approximately the same size,
we generate — for each one — the same number of points.

Step 4. We approximate the geodesic offsets of the boundary curve. (For more
detail on numerical methods of computing geometric offsets, see e.g. [13].) It is
assumed that we have a “sufficiently dense” set of points on S. In addition, the
user has to specify a radius ¢, for offsetting; it should be equal to the average
point distance in the point cloud.

e Delete from Pg all the points in a tubular neighbourhood of the boundary
c.

¢ Repeat until Pg is empty:

For every point on the boundary find the closest point in Ps, and add it to

the set of boundary points, see Figure 8. Delete all points within a tubular

neighbourhood of the new set from Ps.

The method has been applied to the two data sets from Figure 1, see Fig-
ures 9, 10. As one can see from the tennis ball example, the method for algebraic
surface fitting is able to reproduce spheres. We used the degree n = 4 and weights
wo = 10,000, w; = 1.0 and w, = 0.0001.5

® Due to w2 < w1 < wo, the influence of T, (b) is relatively small. Consequently,
the method almost exactly reproduces sphere, even if the condition of Remark 1 is
violated.

13

T
fesstisareey

peeses
e,
St e
+t
2:

Fig. 9. Filling the hole in the babyphone data.

Implementation issues. All the tubular neighbourhoods have the radius ¢,.. They
are always approximated by the union of balls around the data.

The size of the triangle should be smaller than the offsetting radius ,. If
this is satisfied, then the first part of Step 4 excludes the points which are on
the wrong side of the boundary.

Remark 3. The number of generated points is proportional to the number of tri-
angles. Hence, it is appropriate to find a balance between the number of points
generated per triangle and the size of generic triangle chosen for the approxima-
tion of the surface. For medium-sized holes, the number of generated points is
reasonable to deal with. In the case of bigger holes, it is recommended to use ef-
ficient methods of computational geometry (such as hashing) to delete unwanted
points from the generated set.

14

Fig. 10. Reconstructing the tennis ball.

7 Conclusions

We described a method for filling holes in point clouds. After detecting the holes
and their boundaries, we fitted an algebraic surface patch to the neighbour-
hood of the boundary. Finally, auxiliary points filling the hole were generated
by approximating the geodesic offsets of the boundary.

The use of an algebraic fit has several advantages. First, the surface can be
obtained without assuming the existence of a suitable parameterization of the
data. Second, the method can be applied to holes of more general shapes (such as
the tennis ball data, see Figure 10), and more general topologies. For instance,
holes with a cylindrical shape can be handled by our algorithm. Finally, the
method is able to reproduce planes, circular cylinders and spheres, which are
clearly important for engineering applications.

Currently, we implemented only a single patch of an algebraic surface. In
order to fit more complicated shapes, that cannot be covered by a single algebraic
patch, the use of algebraic splines (such as defined by Clough-Tocher, Powell-
Sabin or Bajaj macroelements [2,8]) will be more appropriate. In this case,
however, the use of suitable tension terms will become more important, since no
geometric information is present in the inner part of the hole.

A Blossoming

We recall some results associated with the blossoming principle (polar forms).
There is a unique bijective mapping between polynomials of degree n and mul-
tilinear, symmetric functions. Let f be a polynomial of degree n. Then, there is
a multilinear symmetric function

o REx---xR*—R (23)
| —
n-times
such that |
n! . Y am—
Dnl,...,an(u) = 7.](*(771 -.-Mgu 7) (24)

15

where @ = (1,u1,...,uq)" and f; = (0,mi1,...,ma) " are the projective exten-
sions of points and vectors. Note that the derivative of order zero is the value of
the polynomial itself; the formula is valid in this case, too. Hence, the polar form
can be used to evaluate all directional derivatives of polynomial f. Clearly, the
existence of a polynomial from a given multilinear symmetric function follows
directly.

A multilinear function (23) is determined by
be seen as the values of f. on the e0ei'ei?el® for an arbitrary but fixed basis
{60,...,63} e R:.

("3) coefficients b; which can

B Multiplying multivariate polynomials in
Bernstein-Bézier form

In the sequel we will need multiplication formulas for polynomials in Bernstein-
Bézier form. We briefly recall the algorithm, see [4] for a more general approach
(also covering the composition of polynomials in Bernstein-Bézier form). Let

= Z B(x)b; and g(x Z Bj"(x (25)
lil=n lil=

be two polynomials of degree n and m. Their product in the corresponding
Bernstein-Bézier basis,

= Y Bytm(x)d, (26)
k|=m+n

has the coefficients

ily (1l
dk = Z (-)k(d) biCj. (27)
i+j=k,|i|=n,|j|=m (k)

Finally, we recall the identity
vol(V 1
/ f(x)dV = n+3) Z bi, where vol(V) = g[VO,VI,VZ,V3], (28)
li[=n

which is needed for evaluating the tension terms.

C Minimizing the objective function

The objective function (17) is minimized by solving (22). More precisely, this
leads to

0

%F(b) =woAg +wi Ay + w2A2; (29)

16

where .
Ao = 2pu f (k) B (aw), (30)
k=0
A1 =" 20V f(qr) — nx, %Vf(%)) (31)
k=0 !
and

0 0 0
Ay = K/ <2fzz(x)6_b1fwz(x) + nyy(x)a_bifyy(x) + QfZZ(X)a_l)ifZZ(X)+)
0 0 0
4fwy(x)a—bifzy(x) + 4fzz(x)6—bifzz(x) + 4fyz(x)8—bifyz(x)> dv,

Equation (30) can be rewritten as
Ao = Z (Z QHkBj"(Qk)Bi"(Qk)> bj- (33)
il=n \k=0
In order to simplify (31), we write — according to (24) —
Dy f(x) = nfu(fx""")
=) n(noBll (x) + m B (x) + B (x) + 13 B (%)) by,

Les
lil=n

D, B} (x)
(34)
where 7 is the representation of any vector in barycentric coordinates with re-

spect to the tetrahedron V and polynomials with negative indices vanish iden-
tically. Consequently,

Av=2n) i (n Y0 (VB (aw), VB ()b — (5, VB (@w))) (35)
k=0 il=n
with

VB{(ar) = (DxBi*(ak), Dy Bi'(ak), D2 B{*(ax))- (36)
Similarly as in (34) one gets

D’h’hf(x) = Z D7717lszn(X)bj
lil=n
where by (24)
Dy, Bf' (%) = n(n — 1) fi (i1 71,%™).

Further, if we denote

Adiag Bf! (x) = (Dxx Bf* (%), Dyy Bf*(x), D2a B{'(x)) " (37)

17

and
Aoﬁ'diagBin(x) = (nyBin(x)7szBin(x)aDyzBin(x))Ta (38)

the term (32) can be rewritten as

+2<A0ﬁ'diagBjn (X)a AoﬂdiagBin(x))) bj dv

and evaluated using (25)—(28).

Acknowledgements

This research was supported by the Austrian Science Fund (FWF) through the
SFB F013 “Numerical and Symbolic Scientific Computing” at Linz, project 15.
The authors wish to thank the referees for their comments which have helped
to improve the paper.

References

1. S. Akkouche and E. Galin. Adaptive implicit surface polygonization using marching
triangles. Computer Graphics Forum, 20(2):67-80, 2001.

2. C. L. Bajaj. Implicit surface patches. In J. Bloomenthal, editor, Introduction to
implicit surfaces. Morgan Kaufmann, San Francisco, 1997.

3. U. Clarenz, M. Rumpf, and A. Telea. Robust feature detection and local
classification for surfaces based on moment analysis. IEEE Transactions on
Visualization and Computer Graphics, 2003. submitted, available online at
http://numerik.math.uni-duisburg.de/research/publications.htm.

4. T. DeRose, R.N. Goldman, H. Hagen, and S. Mann. Functional composition algo-
rithms via blossoming. ACM Trans. Graph., 12(2):113-135, 1993.

5. B. Curless et al. The Digital Michelangelo Project. http://graphics.stanford.
edu/projects/mich/, 2000.

6. G. Farin, J. Hoschek, and M.-S. Kim, editors. Handbook of computer aided geo-
metric design. North-Holland, Amsterdam, 2002.

7. H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle. Surface re-
construction from unorganized points. Computer Graphics, 26(2):71-78, 1992.

8. J. Hoschek and D. Lasser. Fundamentals of Computer Aided Geometric Design.
AK Peters, 1993.

9. B. Jittler and A. Felis. Least-squares fitting of algebraic spline surfaces. Adv.
Comput. Math., 17(1-2):135-152, 2002.

10. M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active contour models. Inter-
national Journal of Computer Vision, 1(4):321-331, 1987.

11. L. Ramshaw. Blossoms are polar forms. Comput. Aided Geom. Des., 6(4):323-358,
1989.

12. L. Ramshaw. On multiplying points: The paired algebras of forms and sites. SRC
Research Report #169, COMPAQ Corp., 2001.

18

13

14.

15.

16.

17.

18.

T. Rausch, F.-E. Wolter, and O. Sniehotta. Computation of medial curves on
surfaces. In T. Goodman and R. Martin, editors, The mathematics of surfaces
VII, pages 43-68. Information Geometers, Ltd., 1997.

J.-R. Sack and J. Urrutia, editors. Handbook of computational geometry. North-
Holland, Amsterdam, 2000.

R. Schaback. Remarks on meshless local construction of surfaces. In R. Cipolla
and R. Martin, editors, The mathematics of surfaces IX. Proceedings of the 9th
IMA conference Cambridge., pages 34-58. Springer, London, 2000.

R. Taubin. Estimation of planar curves, surfaces, and non-planar space curves
defined by implicit equations with applications to edge and range image segmen-
tation. IEEE Trans. Pattern Anal. Mach. Intelligence, 13:1115-1139, 1991.

K. Tucholsky. Zur soziologischen Psychologie der Locher. In Zwischen Gestern
und Morgen. Rohwolt, Hamburg, 1952.

T. Varady, R.R. Martin, and J. Cox. Reverse engineering of geometric models -
an introduction. Comput.—Aided Des., 29(4):255-268, 1997.

