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Abstract

We present a construction for polynomial spline surfaces with a piecewise linear
field of normal vectors. As main advantageous feature these surfaces possess exact
rational offsets. The spline surface is composed of quartic Clough—Tocher-type macro
elements. Each element is capable of matching boundary data consisting of three
points with associated normal vectors. The collection of the macro elements forms
a G' continuous spline surface. With the help of a reparamaterization technique we
obtain an exact rational representation of the offset surfaces by rational triangular
spline surfaces of degree 10.

Keywords: rational offset surfaces, Clough-Tocher split, Hermite interpolation.

1 Introduction

Offsets to curves and surfaces are required in various applications, such as milling and
layered manufacturing. Currently, most CAD systems rely on approximation tech-
niques for describing offsets. A comparative survey of approximation schemes for off-
sets to planar curves has been given recently by Elber, Lee and Kim (1997). Methods
for approximating offset surfaces have been discussed by Barnhill and Frost (1995),
Elber and Cohen (1991), Farouki (1986), Hoschek and Schneider (1989) and Pa-
trikalakis and Prakash (1987).
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Another approach to offsetting is that of considering only rational curves and sur-
faces with truly rational offsets, making it possible to represent both a certain shape
and its offsets eractly within a CAD system. A suitable class of planar curves, the
so-called Pythagorean hodograph (PH) curves, has been identified by Farouki (1994).
These curves form a sub-—class of integral Bézier curves; they are distinguished by
having a first derivative vector (hodograph) the components of which belong to a
Pythagorean triple. Consequently, PH curves have exactly rational offset curves
and a polynomial arc length function. With the help of complex calculus, several
constructions for PH spline curves from various input data has been developed, see
e.g. (Farouki and Neff, 1995) and the references cited therein.

Based on the dual representation of planar curves, Pottmann (1995), and indepen-
dently Fiorot and Gensane (1994), have derived an elegant construction of rational
PH curves, see also (Farouki and Pottmann, 1996). Following the dual approach,
a curve is generated as the envelope of its tangent lines. This construction can be
generalized to surfaces, leading to the class of rational PN (Pythagorean normal)
surfaces (Pottmann, 1995). As an application of this geometric approach, and with
the help of concepts from Laguerre geometry, Peternell and Pottmann (1996) have
designed PN surfaces by composing segments of parabolic Dupin cyclides , see also
(Peternell, 1997).

The dual approach to surfaces with rational offsets can be traced back to a report
by Sabin (1974), which also provides some earlier references on the representation of
offset surfaces in CAD.

Working with the dual representation is an elegant geometrical idea, and it pro-
vides a very general construction of the available rational surfaces. However, as
already observed by Sabin (1974), designing a surface by its dual representation
(i.e. via the system of its tangent planes) is not very intuitive, and it may be difficult
to avoid singularities and points at infinity.

In the conference article (Jiittler, 1998), triangular Bézier surface patches with a
linear field of normal vectors (the so—called LN surface patches) have been shown to
possess rational offset surfaces. This fact generalizes the rational offset property of
parabolas to the surface case, see (Farouki and Sederberg, 1995). Using LN surfaces
it is possible to circumvent the problems that are caused by the dual representation.

The present paper describes an interpolation scheme that generates LN spline
surfaces from G' Hermite point data (data points with associated normal vectors).
The LN spline surface is composed of Clough-Tocher-type macro elements interpo-
lating three vertices and associated normal vectors. The individual macro elements
are obtained from a local construction, only based on the geometric information at
the vertices. The construction of the LN spline surface is suitable for converting a
given surface (which is assumed to have no parabolic points) approximately into LN



spline form, by sampling sufficiently dense data. We discuss the existence and the
regularity of the approximations generated by the Hermite interpolation scheme.

In order to find the rational representation of the offsets, we construct a suitable
rational reparameterization that transforms the linear field of normal vectors into
another field satisfying a Pythagorean condition. After applying this substitution,
we obtain an exact rational representation of the offset surfaces, as rational triangular
Bézier patches of degree 10.

2 Surfaces with linear normals

Recall that a triangular Bézier surface patch of degree n is defined by the parametric

representation
x(r,s,t) = Y bijk Bli(rs,t)  rst>0, rstt =1, (1)
4,5,k >0
itjitk=n

with the control points b, ;;, € R3. The blending functions are the bivariate Bernstein

polynomials B}, p(1,8,1) = Z.!;.”!!k! r* s7t¥. The domain of the patch is a triangle A C
R2: its points are represented by the barycentric parameters r, s, t. For additional
information the reader should consult (Farin, 1986) or any textbook on Computer
Aided Geometric Design, e.g. (Hoschek and Lasser, 1993).

Consider the first directional derivatives whose directions are parallel to the edges
of the domain triangle A. They can be expressed in Bézier form as

d
xi(r, s,t) = @X(T, s—u,t+u)

Z A1b; ik ”k(rst)

u=0 iyjyk >0
i+ji+k=n—-1

=n Z Asz’,j,k: BZ;; (T‘, S, t), (2)

Xo(r, 8,t) = ix(r-l—u s,t—u)

du w=0 k>0
itjtk=n—1
d
n—1
x3(r, s,t) = @x(r — U, T+ u,r) =n g Asbi ik Bl (r, 8, t),

u=0 i,5,k >0
i+j+k=n—1

with the coefficients
Aibijk =bijk+1 — bijiie,  Dobijr = biv1ik — bijrtr, (3)

and  Asb;jk = bij11k = biyjk
The field of normal vectors N(r, s,t) % 0 of the Bézier patch (1) fulfills the equations

x(r, s,1) - N(T,S,t) =0, for [=1,2,3, (4)
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with the standard inner product ‘-’. Note that any two of the three equations imply
the third one, as the first directional derivatives satisfy

x1(r, 8,t) + xa(r, s,t) + x3(r, 5,t) = 0. (5)

Clearly, a possible field of normal vectors can be obtained as the cross product of
any two directional derivatives, e.g.

N*(r, 5,t) = x1(r, 5, 1) X Xa(r, 5, 1). (6)

Generally, this leads to a bivariate polynomial of degree 2n — 2. In the sequel we
concentrate our attention on Bézier patches whose normal vectors have the lowest
possible degree.

Definition 1 The triangular Bézier surface patch (1) is said to be a surface with a
linear field of normal vectors (‘LN patch’ for short), if it has normal vectors of the
form

N’(T,s,t) = rn;+sny+1tn;

(7)

- B%,O’O(’r7 87 t) ﬁl + Bé,l’o (T, S, t) ﬁ2 + Bé’o’l(r, 8, t) ﬁg
with certain coefficients (called the vertex normals) @l; € R,

If the surface patch (1) is an LN patch, then the normal vectors N* and N (obtained
from (6) and (7), respectively) are linearly dependent. Consequently,

N*(r, s,t) = A(r, s,t) N(r, s, 1) (8)
holds with some bivariate function A(r, s,t). If the vertex normals f; of N(r, s, t)
are linearly independent, then A is guaranteed to be a bivariate polynomial. Thus,
the LN patches among the Bézier surfaces (1) could be characterized by normal
vectors (6) whose components share a polynomial factor )\ of degree 2n — 3. This
characterization, however, is not very useful. Instead, we obtain from (2) and (4)
conditions for the control points of LN surfaces.

Lemma 2 The surface patch x(r, s,t) is an LN patch with the normal vectors (7),
iof and only if its control points satisfy the equations

T . k . L
ﬁnl‘Albi—l,j,k+%n2'Albi,j—l,k+EHS'Albi,j,k—l =0 4,5,k>0, i+j+k=mn, (9)

for any two values of | € {1,2,3}, where Ab;j, = 0 whenever min{i, j,k} < 0. If
the vertex normals 1i; are given, then we obtain from (9) a system of 2(";2) linear

equations for the 3(";2) components of the control points b; ;.
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The offset (or parallel) surface to the patch x(r, s, t) at a certain distance d € R has
the representation

d -

Xd(’f‘, S, t) = X(Ta s, t) T —— N(T‘, 8, t)’ (]‘0)
IN(r, s,1)]]
with |[N(r,s,t)|| = \/ N(r, s,t) - N(r,s,t). Generally, the offset is not a rational

surface, due to the square root in the denominator of (10). As an advantageous
feature, LN patches have rational offsets:

Theorem 3 The offset surfaces of LN patches can be represented exactly as rational
triangular Bézier surfaces.

This result has been derived in (Jittler, 1998), by generalizing the rational offset
property of parabolas to the surface case. The details of the proof will be presented
in Section 5, along with a construction of the rational Bézier patches that describe
the offsets of the LN surface. This construction is based on a reparameterization
technique that transforms the linear normal vector field in another field satisfying a
Pythagorean condition.

3 Compatibility conditions

LN surface patches are characterized by (4) and (7). These conditions entail cer-
tain technical compatibility conditions which need to be taken into account of when
developing a scheme for the construction of LN spline surfaces interpolating given
data.

Lemma 4 The control points b, jj of an LN patch with the normal vectors (7) satisfy
the following compatibility conditions:

(1) Compatibility at the vertex x(0,0,1) of the patch (cf. Figure 1a),
(i3 — 1i1) - (bo,1,n—1 — bo,o,n) = (3 — Biz) - (P1o,n—1 — bo,o,n)- (11)
(i3) Compatibility along a boundary curve,
(A3)" b, - (s — ;) = (A3)" bo, - (i3 — 1) = 0, (12)

where the n—th difference vector (As)"bgpo involves only the control points
along the boundary x(1—u,u,0), cf. Figure 1b.
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Figure 1: Compatibility conditions for LN patches (scheme).

Proof. Differentiating the identities N - Xy = N - x; = 0 in the directions that are
parallel to the first resp. second edge of the domain triangle we obtain

N_’-l'Xz-f-N_'-'XlQ:NQ'Xl-i—N’-'XlQ, hence Nl'XQZNQ'Xl. (13)

Here, the (multi-) index denotes the (iterated) directional differentiation of the patch
x(r, s,t) and the associated linear normal vectors (7), cf. (2). In particular,

N1 = N3 — 1o, N2=n1 — 13, N3 =1y — 1. (14)

Evaluating (13) at (r,s,t) = (0,0, 1) gives (11).

In order to prove the remaining condition, we differentiate the identity N-x; =0
from (4) n times with respect to the third direction. Note that the second order
derivatives of N(r, s,t) vanish. With the help of these observations we arrive at

n N3 -x133.3 +N-x133.3 =0, hence Njz-x;33.3 =0, (15)
N~~~ S~~~ S~~~
n—1 times n times n—1 times

as the (n+1)st order derivatives of x(r, s,t) vanish as well. Similarly, differentiating
N - x3 = 0 once with respect to the first direction and (n—1) times with respect to
the third direction one gets

Nl X333 + (n—1) N_3 ©X133..3- (16)
N~~~ ~~~
n times n—1 times

According to (15), the second term vanishes. Using (2) and (14) we obtain

(ﬁ3 - ﬁg) . (Ag)n b(),()’() - (].7)
Finally, applying n—fold directional differentiation to N - X3 gives
Ns ©X33..3 = (ﬁ2 - ﬁl) . (A3)n bo,o,o = 0. (18)

n times



Combining this observation with (17) completes the proof of (12). H

Clearly, analogous conditions are satisfied at the remaining vertices and boundaries
of an LN patch. From these compatibility conditions we draw the following conse-
quences regarding possible constructions of LN spline surface from given data.

1. In order to construct two boundaries of an LN patch independently of each
other, we would have to use singular vertices, i.e. coinciding corner control points
bo,in-1 = boon = b1on_1. Otherwise, the control points of the boundaries are
coupled by condition (11).

2. In order to design a boundary of an LN patch independently of the normal vector
at the opposite vertex, we have to use a curve of reduced degree n—1. Conse-
quently, the compatibility condition (12) is trivially satisfied with (A;)" bg g = O.
Otherwise the boundary curve and the normal vector at the opposite vertex are
coupled by condition (12).

4 Hermite interpolation with LN macro elements

We consider the following Hermite interpolation problem. Given three points (ver-
tices) v; € R® with associated normal vectors m; € R® (4 = 1,2, 3), find a piecewise
LN surface patch that interpolates these data. Here, we will concentrate on the
interpolation of only three data, leading to a triangular LN macro element. Later,
several elements will be put together in order to construct LN spline surfaces.

A similar macro element has been presented by the first author in (Jiittler, 1998).
However, that construction was based on singularly parameterized vertices, in order
to satisfy the compatibility condition (i) of Lemma 4. Moreover, the degree of the
patches is relatively high (six), which may entail difficulties with the parameterization
of the offsets.

The aim of this paper is to present an improved construction, providing the
following features.

1. Locality. The construction of the macro elements is to proceed locally, as far as
possible. For instance, both the boundary curve connecting the points vy, v, and
the normals along this boundary should depend solely on these vertices and on the
associated normals m;, m,, but not on the data vz, mz at the opposite vertex.
Consequently, the macro elements will be suitable for building G* spline surfaces,
as macro elements sharing two boundary data will automatically meet with G*
continuity.

2. Regularity. The resulting triangular Bézier patches are expected to be regular.
That is, any two of the first directional derivatives (2) should be linearly indepen-
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Figure 2: Clough—Tocher-type macro element and the given data.

dent at all points, thus leading to a well-defined tangent plane everywhere. Using
a suitable type of macro elements we are able to avoid singularly parameterized
vertices (cf. the compatibility condition Lemma 4(7) and its consequence). Clearly,
the regularity of the resulting surface depends on the input data also. We present
some results concerning the regularity of the patches for data that are taken from
surfaces without parabolic points.

3. Minimum degree. The polynomial degree of the triangular Bézier patches should
be as low as possible. This is important, as the rational representation of the
offset surfaces are found with the help of a quadratic rational reparameterization
that leads to a higher polynomial degree. Thus, it is advantageous to start from
a relatively low degree. We show that the minimum possible degree is four and
interpolate the data with quartic macro elements.

4.1  Clough—Tocher—-type macro elements

We interpolate the three data (v;,m;) by three LN patches, forming a Clough-
Tocher-type macro element, see Figure 2, cf. (Hoschek and Lasser, 1993, p.411), or
(Clough and Tocher, 1965).

The I-th patch x®)(r,s,t) has the parametric representation (1) with control

€ R [ € {1,2,3}. Its linear normal field is given by (7), with the
@

coefficient vectors 1",

points bl(l]) &

i) =i =y, A7 =d)) =ms; a0 =4y = m,
Z(1) _ 2(2) _ 20) _ 10 oo (19)
and 1y’ =1, =1y = 3(M; + my+ m;)

Here, the normal vector at the interior vertex of the Clough—Tocher split (shown
as the dashed vector in Figure 2) is simply chosen as the average of the boundary

normals m;. In consequence of (7), the control points bz(lj),c of the three patches

satisfy certain linear equations (9), according to Lemma 2.



The three patches are to interpolate the given vertices,

vi =xP(0,1,0) = x®(1,0,0), v, =x®(0,1,0) =x1(1,0,0),

20
and v3 =x1(0,1,0) = x®(1,0,0). (20)

This entails the conditions
V1= bt()?b,o = bfﬁ%,m V2 = b(()i)z,o = bg,z),m and vz = b(()?b,o = b7(12,2),0- (21)

Finally, the three LN patches are required to meet continuously along the inner
boundaries of the macro element, i.e.

xM (0, 1—u,u) = xPD(1—u,0,u), xP(0,1-u,u)=x®1~u,0,u),

22
and x®(0,1—u,u) = xV(1—u,0,u), (22)

or, equivalently,

) =bl) . and by =blY

Y] 1,0,57 03,5 1,0,

b — p?

& o=bE . b (i, €Zy, i+j=n). (23)
Note that, in addition to (22), the normal vectors of the three LN patches are identical
along the inner boundaries, see (7) and (19). Thus, the macro element is even G!

continuous.

4.2 Boundary curves

First we construct the boundary curves of the macro element. For instance, consider
the boundary curve y(u) = x®®) (1—u, u, 0), running from v; to v,, with the associated
normals m;, my. The boundary is chosen as a cubic Bézier curve

y(u) = vi B3 (u) + p1 Bl (u) + p2 B3 (u) + vo Bi(u), wu € [0,1], (24)

with the univariate Bernstein polynomials B?(u). The inner control points p;, pe
are unknown. Clearly, the LN conditions (4) have to be satisfied along the boundary,
ie.,

0zx@@ﬂ—uﬁ)ﬁ®@ﬂ—%m:ﬂEWW”{U—wnn+umﬂ (25)

with the linear normal vector N® of the patch x®, see (7) and (19). This leads to
the 4 linear equations

(Pl—Vl)'ffh:O, 2(P2—p1)‘ff11+(P1—Vl)'IﬁQZO,

o o . 26
(Vo—p2) M +2(p—p1) My =0, (vo—p2) -my=0 (26)
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Figure 3: Boundary curves of LN patches

for the 6 components of the unknown control points p;, pe. We pick the solution
that minimizes the squared length of the control polygon,

F(p1,p2) = [Ip1 — vill* + llp2 = p1ll* + [[v2 — p2ll?, (27)

hence generating a special minimum norm network of boundary curves, cf. (Kolb,
Pottmann and Seidel, 1995) and the references cited therein. The solution of the
constrained quadratic optimization problem F' — Min., subject to (26), can be com-
puted by solving a linear system, using Lagrangian multipliers.

Lemma 5 The quadratic optimization problem F — Min., subject to (26), has a
unique solution if and only if the normal vectors m; and My are linearly independent.

Proof. The Lagrangian multiplier technique leads to a 10 x 10 linear system. The
determinant of its coefficient matrix factors into 108 ||m; x my|[*. This proves the
assertion. ]

Clearly, if the normal vectors m; and mj are linearly dependent, then the boundary
curve has to be contained in a plane perpendicular to both m; and m,. Hence, in
this case solutions can exist only if the difference vector vo — vy is perpendicular to
both m; and ms,.

Two examples of boundary curves are shown in Figure 3. Both curves interpolate
the same boundary points vi, vo. The associated boundary normals m; and ms,
have identical directions, but different lengths. This leads to a different distribution
of the normals along the boundary (shown as the dotted lines), hence to different
boundary curves. The left curve has an undesired loop, while the right curve behaves
as expected. In the next theorem we discuss the shape of the solutions for data which
are taken from a smooth surface without parabolic points (i.e., Gaussian curvature
K # 0 everywhere).
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Theorem 6 Let ® be a C? surface patch which is assumed to have no parabolic
points, i.e. non——zero Gaussian curvature. Consider two points v, vo on ® with as-
sociated unit normals My, My, i.e. |[My|| = 1. Applying the construction of Lemma 5
to these data produces a cubic boundary curve y(t), see (24). The following assertions
are true, provided that the distance (stepsize) between the points vy, vy is sufficiently
small.

(i) The problem F — Min., subject to (26), has a unique solution.

(1) The solution exhibits the desired shape, running directly from vi to vo without
loops or cusps. More precisely, consider the straight line segment

(1—u) vy +uve, ue€l0,1].

For decreasing stepsize, the cubic boundary y(u) matches the shape and the
parameterization of this line segment.

Proof. Without loss of generality we may choose v; = (0,0,0)" and 1i; = (0,0,1) .
Then, in a neighbourhood of vy, the surface can be approximated by the graph
(z,y, F(z,y))" of the bivariate Taylor series

F(z,y) = $fuz®+ fuzy+3foy’

28
+ %f111$3+%f112l'2y+%flggxy2+éf222y3+... (28)

with certain coefficients f, fi, fij, .. .. The indices 1,2 of f refer to the partial deriva-
tives respect to = and y at the origin (z,y) = (0,0). Owing to the choice of v, n;
we get 0 = f = f; = fy. The second point vy is chosen with its abscissas (h,0) on
the z—axis, with the stepsize h > 0.

Vo = (h,, 0, %fn h2 + % f111 h3 =+ .. .)T. (29)

The associated normal vector m, is obtained by normalizing the cross product of
the partial derivatives of (z,y, F(x,y)) at (z,y) = (h,0). This leads to the Taylor
expansion

f11h— fiih? + ( %fnn-l— fub+1 f11f12 )h + ...
m, = f12h——f112h2 + (- %f1112+ frafir® + it I (30)
1+ (=3 fu® — 3 fi2’) b +(——f11f111— f12f112)h +...
Combining this result with m; = (0,0,1)" we get
|y x my||* = (fu2 + f122) B? 4+ (fiafiiz + furfin) B+ ... (31)

If (f11, fi2) # (0,0) and the stepsize h is sufficiently small, then a unique interpolating
boundary curve exists, cf. Lemma 5. The first condition is violated if and only if v, is

11



a parabolic point of the surface with the asymptotic direction (0,1,0)". This proves
the first part (i) of the theorem.

Using suitable computer algebra tools such as Maple or Mathematica, the problem
F — Min., subject to (26), is solved for the Taylor expansions of the data v; with
associated unit normals m;. This produces an expansion of the boundary curve

wh+ (u(1=u) firfin) / (2 fu + 2f122) R+ ...
y(u) = (v (1=u) fiafi1)/ (2 fii? +2 f122) R+ ... (32)
%szn h2+

By comparing this Taylor series with that of the line segment (1—u) vy + uwvsy, it
can be seen that the difference between the two curves is in the order of O(h?).
Consequently, the boundary curve (32) has the desired shape for sufficiently small A,
without loops or cusps. This completes the proof. ]

The theorem can now be applied to a triangulated cloud of data.

Corollary 7 Consider a triangulated cloud of data with associated unit normals,
both taken from a C? surface ® without parabolic points, i.e. with non—zero Gaussian
curvature. Assume that the collected facets of triangulation (i.e. the triangular mesh)
reproduce the shape of the surface.

For each edge of the triangulation, the above—described construction is used in
order to find a cubic boundary curve. Then, provided that one has sampled sufficiently
many and sufficiently dense data from the original surface (cf. Remark 1), all these
boundary curves exist and are reqular. Moreover, the facets of the resulting network
of boundary curves match the shape of the facets of the triangular mesh.

Remark 1. The assumption of ‘sufficiently dense’ data is concerned with the quality
of the triangulation of the data points. The corollary refers to a sequence of triangular
meshes that is obtained by taking more and more sample points from the original
surface. For this sequence, the inner angles of the triangular elements are assumed
to be bounded strictly away from zero. That is, the triangles should not become
arbitrarily long and thin. Then, by constructing LN boundaries for these triangular
meshes, the assumption becomes true for sufficiently many data.

Remark 2. Cubic boundary curves have the lowest possible degree, if the boundaries
are to consist of only one segment. By splitting the boundaries into two segments, it
is possible to use quadratic boundaries. In this case, however, one would need to use
triangular elements that are more complicated than the Clough-Tocher split. Here,
it seems to be the most natural choice to consider Powell-Sabin—type elements, see
(Hoschek and Lasser, 1993, p.412). However, it turns out that the degrees of freedom
provided by these elements (with quadratic boundaries and cubic patches, owing to

12
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Figure 4: Free control points (grey dots) of the macro element.

the compatibility condition of Lemma 4) are not sufficient to match the three data
v; with associated normals m;. Thus, more complicated splittings are required to
obtain a minimum degree construction, and the increased number of sub-patches
might well outweigh the advantages of the reduced degree. This may be a subject of
further research.

4.3 Filling in the patches

In order to find the Clough—-Tocher—type macro element that matches the three G*
Hermite vertex data (v;, m;), we apply the construction of the previous section to the
boundaries, cf. Figure 2. This produces three cubic boundary curves. According to
the second compatibility condition (see Lemma 4), the interpolating macro element
has to be composed of subpatches x(r, 5,t), [ € {1,2,3}, of minimum degree n = 4.
s,
the exterior boundaries of the subpatches. Moreover, the control points along the

Raising the degrees of the boundaries by one gives the control points b, ., along
inner boundaries are identical, cf. (23). Thus, after choosing the boundary curves we
have 19 free control points, i.e. 57 degrees of freedom (cf. Figure 4).

Next we build up a system of equations that guarantee the desired linear field of
normal vectors. By collecting the conditions obtained from (9) and (19) we obtain
a system of 6 (g) = 95 equations. Some of these conditions, however, are redundant
and can therefore be deleted from the system. For instance, the LN conditions are
automatically satisfied along the edges of the macro element, due do the construction
of the boundary curves. Further redundancies occur along the inner boundaries of
the three subpatches. After eliminating the redundant equations we obtain a system
of 54 equations for 57 unknowns. Unfortunately, we are not able to discuss the
existence of solutions as in the case of the boundaries (cf. Lemma 5), as the current
computer algebra systems fail to generate symbolic solutions. However, according to
our numerical experiments, the system is solvable for data in general position.

As the 57 components of the unknown control points b

1,5,k
54 equations, we have 3 degrees of freedom. A particular solution can be picked by

have to satisfy only

13



Figure 5: Clough—Tocher-type LN macro elements interpolating convex

(left) and non—convex (right) data.

minimizing a suitable quadratic objective function, such as

3
GO = Y (A + (22 + (22)%) b, 6,5, k>0.  (33)

This objective function is related to the squared second derivatives of the patches,
hence it can be interpreted as some kind of fairness measure. (See Hoschek and
Lasser (1993) for more information on fairness criteria for surfaces.) Similar to the
construction of the boundaries, the solution of the constrained quadratic program-
ming problem

G(...) = Min. subject to the LN conditions (34)

could be computed with the help of Lagrangian multipliers, leading to a quadratic
system of equations with 57 4+ 54 = 111 unknowns. Alternatively, one may compute
the general solution of the underdetermined system of 54 equations which depends
on 3 free parameters, and then pick the particular solution that minimizes (33).

Two examples are shown in Figure 5. For the first (resp. second) macro element,
the data (v;, m;) have been taken from a convex (non—convex) surface. The resulting
macro element is convex (resp. non—convex) also.

In addition to the surface patches, the figures show the Hermite boundary data
(v;,m;) and the control nets {bglgk} (thick grey lines) of the three sub—patches.
Moreover we have drawn some intersection curves (solid lines) with parallel planes
z = const., in order to visualize the shape of the surfaces.

The shape of the boundary curves for data which are taken from a sufficiently
smooth surface without parabolic points has been discussed in Theorem 6. So far we
have not succeeded in deriving a similar result concerning the shape of the LN macro
elements. However, we may state the following conjecture which is also supported
by our numerical experiments.
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Conjecture. Consider a triangulated cloud of data with associated unit normals,
both taken from a C? surface ® without parabolic points, i.e. with non—zero Gaussian
curvature. Assume that the collected facets of triangulation reproduce the shape of
the surface. For each facet of the triangulation, we construct a LN macro element.
Then, provided that one has sampled sufficiently many and sufficiently dense data
(see Remark 1 after Corollary 7) from the original surface, all these macro elements
ezxist and are reqular, and they reproduce the shape of the original surface.

Remark 1. LN patches are not capable of describing surfaces having both elliptic
(i.e. locally convex) and hyperbolic points, as they have difficulties with representing
parabolic points. Parabolic points correspond to singular points of the field of normal
vectors. Those points are characterized by linearly dependent vectors 1<T, N; and 1<T2,
where the indices refer again to directional derivatives, cf. (2). In the case of a linear
normal field (7), this is only possible for linearly dependent coefficient vectors fi;, 1y,
n3. Thus, if an LN patch has got a parabolic point, then the whole patch consists of
parabolic points.

Remark 2. According to our numerical experiences, LN spline surface behave very
nicely if the data stem from an elliptic (i.e. locally convex) surface ®. However, in
the case of a hyperbolic surface patch, one has to take a relatively large number of
data in order to get reasonable (i.e. regular) results. Also, in this case the shape of
the data triangles should be chosen very carefully.

4.4 LN spline surfaces

By composing several macro elements we are able to generate smooth spline surfaces.

Proposition 8 Consider two Clough—Tocher—type LN macro elements sharing two
vertices vi, Vo and the associated normals mi,, my. Then, the boundary curve from vy
to vy and the field of normal vectors along the boundary are identical. Consequently,
the two macro elements meet with G* continuity.

The proof is straightforward; the boundary curves of both macro elements are iden-
tical, as their construction depends solely on the shared data v;, vo and m;, ms,.
Moreover, due to the LN property, also the normal vectors along the common bound-
ary are identical, hence the patches have a G* joint.

In consequence of this observation, the Clough-Tocher-type LN macro elements
can be used for generating integral G'! spline surfaces with rational offsets. An
example will be presented in Section 5.4.
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Figure 6: Reparameterization of an LN patch (scheme).

5 Offsetting LN surfaces

Consider an LN patch of degree n with barycentric parameters r,s,¢ and domain
triangle A. For instance, it could be one of the three subpatches of the Clough—
Tocher—type macro element from Section 4. With the help of a suitable reparameter-
ization we construct an exact rational parameterization of the offset surfaces (10) at
a certain distance d. In the sequel, the vertex normals ni; are assumed to be linearly
independent, hence the LN patch has no parabolic points.

5.1 Rational representation of the offsets

We introduce new barycentric parameters u, v, w satisfying u+v+w = 1 with respect
to another domain triangle A* by substituting
T(U,’U,T,U) = La S(U,U,w) = La and t(u,v,w) = 45 (35)
pt+ro+T pt+o+T ptro+T
see Figure 6 for a schematic illustration. The bivariate functions p = p(u,v,w),
o = o(u,v,w), and 7 = 7(u,v,w) are certain bivariate polynomials of degree m in
Bernstein—Bézier representation

p(u’ v’ w) TZ}]ik
o(u,v,w) | = Z v, v, w) sk (36)
7(u, v, w) k20 tijik

with Bézier coefficients 7; ;x, sijk, tijr € R, respectively. This substitution trans-
forms the squared length of the normal vector into

p
N’(r,s,t)-ﬁ(r,s,t):m [((poT)Q| o] (37)
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with the 3 x 3 Gramian matrix @ = (¢i;)ij=1,23 = (H; - 1i;); j=123 of the vertex
normals 1;. If the vertex normals n; are linearly independent, then the Gramian
matrix is well-known to be positive definite.

In order to obtain from (10) a rational parametric representation of the offsets, we
choose the reparameterization such that |[N(r, s, ¢)|| turns into a (at least piecewise)
rational function of the new barycentric parameters u, v, w. According to (37), the
bivariate polynomials p, o and 7 have to satisfy the identity

p(u, v, w)
(p(u,v,w) o(u,v,w) T(u,v,w)) Q| o(u,v,w) | =& (u,v,w) (38)
7(u, v, w)
where
g(U,U,UJ) = Z zgk(u v w) xl,J,k (39)
4,5,k >0
i+j+k=m

is another polynomial with Bézier coefficients z; ; , € R. Consequently, the triangular
rational Bézier surface

p(u,v,w)/€(u, v, w)
y(u,v,w) = | o(u,v,w)/E(u,v,w) |, w,v,w>0, u+v+w=1, (40)
7(u, v, w)/&(u, v, w)

of degree m with numerator (36) and denominator (39), hence with the homogeneous
control points

Tije = (Tijk Tijk Sijk tije) s (41)

describes a triangular patch on the quadric surface

Y4l
(pr P2 p3) QI p | =1 (42)
b3

that is generated by the quadratic form associated with the Gramian matrix. If
the vertex normals n; are linearly independent, then this quadratic surface is an
ellipsoid, due to the positive definiteness of the Gramian matrix. We will refer to
it as the Gramian ellipsoid associated with the vertex normals. Triangular rational
Bézier patches on quadric surfaces have been studied in several publications. More
information and many related references can be found in (Sederberg and Anderson
1985) and (Dietz, Hoschek and Jiittler, 1993).

Proposition 9 Consider a collection of several triangular rational Bézier patches
(40) of degree m that describe the first octant of the Gramian ellipsoid (42). (See
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Figure 7: An octant of the Gramian ellipsoid (a) and its quadratic rational
parameterization (b).

Figure 7a for an illustration.) The patches are assumed to have non-negative com-
ponents &, p, o, T for its domains A*, i.e. for barycentric parameters u,v,w > 0,
u+v—+w =1. The denominator £ is even assumed to be strictly positive. Then, the
reparameterization (35) produces an exact representation of the offset surface (10)
by rational Bézier surface patches of degree m(n + 1), where n is the degree of the
LN patch.

Proof. Assume that the first octant of the Gramian ellipsoid has been parameterized
as described in the proposition. Consider a point x(r, s,t) on the LN surface patch.
The ray (A\r As At)T, A € R, intersects one of the patches covering the first octant
of the Gramian ellipsoid at a certain point

(p(ug, vo, wo) /& (ug, vo, wo) o(...)/EC..) 7(...)/EC.)T. (43)

Consequently, as the numerator £ was assumed to be positive, the substitution (35)
reproduces the original barycentric parameters (r,s,t), hence the original surface

point.
Owing to (37) and with the help of the identity (38) we get
N-N ¢ (44)

:,0+0+7"

For each patch on the Gramian ellipsoid, the parametric representation (10) of the
offset at distance d leads to

_ x(p,o,7) p+o+1 N(p,o,7) _ {x(p,0,7) +d (p+o+1)" N(p,0,7)

(p+o+1)" 3 pto+T € (p+o+1)n

(45)
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The common denominator p+o-+7 of the substitution (35) produces the denomina-
tors of the LN patch x and of the normals N, as both expressions are homogeneous
polynomials of the barycentric parameters r, s, . By generating the Bernstein-Bézier
representation of (45) we obtain a triangular rational Bézier patch of degree m(n+1)
with respect to the barycentric parameters u, v, w. ]

Thus, with the help of a rational parameterization of the associated Gramian ellip-
soid, a given LN patch can be transformed into a Pythagorean normal surface.

Remark. For the offset at distance 0 (i.e. the original surface), the degree of the
reparameterized surface (45) reduces to mn, as the second term vanishes.

5.2 Parameterizing the Gramian ellipsoid

In order to represent the offset surfaces x4(r, s,t) by rational Bézier patches of mini-
mum degree, the degree of the patches covering the octant of the ellipsoid should be
kept as low as possible. Consequently, we will parameterize the Gramian ellipsoid by
quadratic rational patches. However, there is the following negative result.

Lemma 10 In general, the first octant of the Gramian ellipsoid cannot be parame-
terized by a collection of reqular rational quadratic Bézier triangles.

Proof. With the help of a suitable affine transformation, the Gramian ellipsoid can
be mapped into a sphere. The octant is then transformed into a spherical triangle
that is bounded by segments of circular arcs. According to the results on regular
quadratic Bézier triangles on spheres, the sum of the interior angles equals 7, as the
three boundary circles always intersect in one point, see Boehm and Hansford (1991),
Dietz, Hoschek and Jiittler (1993), or Sederberg and Anderson (1985). Consequently,
if a collection of regular quadratic Bézier triangles covers a segment of the sphere,
then the interior angles of this segment sum up to a multiple of 7. In general,
however, the interior angles of the octant’s image under the affine transformation are
not a multiple of 7. For instance, if the Gramian ellipsoid is a sphere itself (this is
the case for mutually perpendicular vertex normals ni; of uniform length), then the
interior angles of the octant of a sphere sum up to 3/27. This proves the result. []

We decompose the first octant of the Gramian ellipsoid into two quadratic triangular
Bézier patches, see Figure 7b. One of the two patches describes a biangle, as one of its
boundaries degenerates into a point. The homogeneous control points of the patches
have been gathered in equations (50) and (53). Readers who are not interested in
the details of the construction may skip the explanations below.

Both patches are constructed with the help of stereographic projection, cf. (Geise
and Langbecker, 1990). In order to keep the notation as simple as possible we shall
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use homogeneous coordinates p = (Dp...ps)' € RY\ {(0 0 0 0)"}. The standard
Cartesian coordinates p = (p; p p3)' of points are obtained from p; = p;/po,
po # 0. Linearly dependent vectors of homogeneous coordinates correspond to the
same point. Homogeneous coordinates with py = 0 correspond to points at infinity;
they can be seen as the intersection of parallel lines with direction (p; Pp D3)'.
For more information on homogeneous coordinates, the reader should consult any
textbook on projective geometry.

Using homogeneous coordinates, the equation of the Gramian ellipsoid (42) trans-
forms into pTQ P = 0, with the real symmetric 4 x 4-matrix

~1/0 0 0

o= . (46)
0] @
0

Consider a point ¢ on the Gramian ellipsoid. The mapping
2 (XQX)c—2@QX) X (47)
maps any point X to the intersection of the line p V ¢ with the Gramian ellipsoid,
see (Geise and Langbecker, 1990). This mapping will be called the stereographic
projection with centre €.
Recall that Gramian matrix of the vertex normals has the components ¢; ; = 0;-1i;,

and let n; = ||fi;]| =,/ @ . We compute the intersections of the coordinate axes with
the Gramian ellipsoid,

pi=011/n; 007, Po=(101/ny 0)7,

Ps=(1001/n3)7, @q=(10—1/ny 0)7, (48)

see Figure 7b. In order to construct the regular quadratic patch, we apply the
stereographic projection with centre Qs to the rational linear Bézier patch

i(t)(u,v,w):uf)1+v/2f)2+wﬁg (49)

with vertices (control points) p;. The factor 1/2 at p, is introduced in order to
simplify the result. The stereographic projection (47) with ¢ = qo produces the
quadratic rational Bézier patch y® (u, v, w) (see (40)) with the homogeneous control
points

=) _2minet2q2 ~ () _ g2 1 1 mT

1‘2,0,0— ning P1, rlalao_( +n1n2 niy ns 0) ?

t) _ T
01= (nemgni+qi sno+qiona+gasni Nong+gas MiN3—qgis NiNe+qi2)

=(®) 1

rl: ,1 ninansg
=) _~ ) _ 92,3 1 1N\T =) _ 92,3\ =
To20=P2, Top1=(1+;22 0 = +-)", Top.=2(1+;2) Ps,

(50)
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cf. (41). In order to find the analogous representation of the biangle patch, we
introduce two points f1, f2 at infinity,

El = (0 —q1,3 0 nf)T and

(51)
f, = (0 —q1,3N2—(1,2M3 n1(n1n3—CI1,3) n1(n1n2+Q1,2))T-

Both points are infinite points of tangents to the Gramian ellipsoid at p;. The first
(resp. second) point belongs to the tangent that is contained in the plane spanned
by the origin, p; and p3 (resp. by pi, p3 and q2). Note that f1 3 >0, f22 > 0 and
f;’g > 0, hence the orientation of the associated direction vectors is as indicated by
the arrows in Figure 7b.

The quadratic rational representation y® (u,v,w) of the biangle is obtained by
applying the stereographic projection with centre ¢ = p; to the rational linear Bézier
patch

x(®) (u,v,w) = U/ang + v/n1¥1 + w ps. (52)

Again, the factors 1/n; at E are introduced in order to simplify the result. The
homogeneous control points of the biangle patch are

?§?370=2 (nine+q1,2) (nanz+g23) P, ﬁ'ﬁf(n2n3n1+q1,3n2+q1,2n3+q2,3n1) P1,

~(b ) (b b ~ -

rg()) =n2 r%l, 1'(()%0 (nin3+q13) P, réil—(lﬁfg 2 0 ns)Ta (()2) :nfnap?,-
(53)

In order to improve the distribution of the parametric speed on the offset surfaces,
the two quadratic patches (50), (53) should be brought into standard form (Farin,
1995) by transforming the control points according to

,],k = Mt rzyk with A = V72 0|0/T020|0’ M= T200|0/T002\0’ L€ {t,b},

(54)
where the indices |y refer to the weight (0th) component of the homogeneous coordi-
nates. This operation produces identical weights at the three vertices; it corresponds
to a bilinear transformation of the barycentric parameters u, v, w.

An example is shown in Figure 8. The Gramian ellipsoid has been obtained from
the vertex normals (2,0,—0.6)", (—0.1,3,0) " and (0,0,5)"; its principal axes are not
the axes of the coordinate system. The figure shows the control points r %l) ik of the
two quadratic rational patches. Clearly, the control points along the inner boundary
(shown as dashed curve) are identical.

5.3 Generating the offsets

With the help of the quadratic patches y*)(u, v, w) covering the first octant of the
Gramian ellipsoid, it is now possible to generate exact rational Bézier representations

21



P2
regular patch

Figure 8: The quadratic patches on a Gramian ellipsoid.

offset surface

= VAT v
- 4““&\\\\1"‘
I WAYAR

regular patches

(a) (b)

Figure 9: LN macro element and offset surface for convex data (a) and
the control nets (b).

O 'V2

of LN patches, according to Proposition 9. The offset surface of an LN surface is
then described by two rational Bézier triangles of degree 2(n + 1), see (45). In the
case of the subpatches of the LN macro element, we obtain two rational patches of
degree 10, each having (122) = 66 Bézier control points. In order to compute these
control points, one has to evaluate certain compositions of Bernstein polynomials,
e.g. x(p(u,v,w),o(...),7(...)). Suitable algorithms for these computations have
been developed by DeRose (1988).

As an example, Figure 9a shows an LN macro element and its offset. The LN
macro element matches three G' data (v;, m;) that are taken from a convex surface.
In addition to the macro element, the figure shows the offset surface at a certain
distance d; it is described by 6 rational Bézier triangles of degree 10 which are
obtained after the quadratic rational reparameterization. Both the original surface
and its offset are visualized by level curves, i.e., by intersections with a system of
parallel planes.

The quadratic reparameterization has been applied to the LN macro element also,
producing 6 rational Bézier triangles of degree 2n = 8, cf. (45). The Bézier control
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Figure 10: LN macro element and offset surface for non—convex data (a)
and the control nets (b).

nets, along with the given vertex data, have been drawn in figure 9b. The biangle

patch on the Gramian ellipsoid produces degenerate rational Bézier triangles, where

one boundary curve collapses into one point.

Similarly, Figure 10 shows an LN macro element and its offset that are obtained

from non—convex data (a) and the associated Bézier control nets (b). Here, the

biangle patches are relatively long and thin; this happens if the boundary normals

m; are almost parallel. Thus, in this situation it might be more appropriate to use

an alternative representation of the Gramian octant, see the remark below.

Remark. Using degenerate Bézier triangles may entail problems in applications.

In our situation, there are two possibilities to circumvent the problem of degenerate

representations.

e On one hand, the octant of the Gramian ellipsoid could be parameterized by

triangular Bézier surfaces of degree 4. Using such patches it is possible to describe

the octant as a single rational Bézier surface, see (Joe and Wang, 1994) for more

details. However, as a disadvantage of this approach, the degree of the offsets
(4n 4 4) becomes relatively high; it would be 20 for the subpatches of the LN

macro element, producing patches with (%) = 231 control points.

e Alternatively one might use quadratic triangular patches with a generalized pa-

rameter domain, so—called trimmed patches. For instance, the domain A* of the

regular quadratic patch y() (u,v,w) could be extended, in oder to describe the

whole octant of the ellipsoid. This produces a triangular region in the param-

eter domain, where one of the boundaries is a certain conic section. Using this
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Figure 11: LN spline surface describing a quarter of a glass—shaped
object. The data (a), the LN spline surface (b) and the
Bézier control net (c).

approach, the offsets can be represented as trimmed triangular Bézier patches of
degree 10. Similarly it is possible to derive trimmed tensor-product representa-
tions of degree (10, 10). These representations may be most useful in applications,
as trimmed tensor—product patches are supported by the current CAD data ex-
change standards, such as IGES or STEP.

5.4 Olffsets of LN spline surfaces — an example

Figure 11 shows an example, modeling a quarter of a glass—shaped object. The data
(triangulated points with associated normals, see Figure 11a) have been sampled from
a surface of revolution whose meridian consists of two circular arcs. Consequently, the
original surface is composed of two toroidal patches. Note that the original surface
has no parabolic points as it is not C? along the common boundary of the toroidal
patches. The triangulated data points are interpolated by a LN spline surface of
degree 4, see Figure 11b,c. Note that any affine image of the LN spline surface is
again a LN spline surface, as the class of surfaces with linear normals is affinely
invariant, see (Jittler 1998).

The offset of the LN spline surface at a certain distance d can be represented
exactly by rational Bézier triangles of degree 10. Figure 12 shows the offset surface
of a surface strip (not covering the whole of the quarter). The figure has been
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generated with the help of the exact rational Bézier representation, as described in
the previous section.

Figure 12: A surface strip of the LN spline surface and its offset.

5.5 Surface conversion vs. offset approxrimation

The construction described in this paper can be used for approximately converting
any given surface (without parabolic points) into an integral spline surface with
rational offsets. Clearly, in many applications, it will be more appropriate to use the
traditional methods for offset surface approximation, as they deal directly with the
offset, rather than with the base surface. However, if the initial surface is not given
in a standard CAD representation (e.g., in reverse engineering), then the conversion
into LN form might be a useful approach, too.

As an advantage, the LN surface spline scheme reproduces the singularities (edges
and self-intersections) of the offset surfaces very well, without any need for additional
segmentations. Traditional schemes for offset surface approximation, by contrast, will
have difficulties with these singularities. An example is given in Figure 13a, showing
an octant of the ellipsoid with the diameters (7,10,15), along with its inner offset
at distance 6.5. The singularities of the offset are clearly visible. The surface patch
has been approximated by 3 LN macro elements. The control nets of the LN spline
surface and of its offset have been drawn in Figure 13b. The shaded images of the
approximating surfaces have not been drawn, as they are virtually identical to the
plot (a) of the original surfaces.

Alternatively, the construction described in this paper can also be used for inter-
polating given point data with a LN spline surface. If the associated normal vectors
are not yet known, then they have to be estimated from the data. There are various
possibilities to generate suitable estimates, e.g., with the help of auxiliary surfaces
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Figure 13: Inner offset of an ellipsoid. The original surfaces (a) and the control
nets of the LN spline approximation (b).

which are locally fitted to the data. These auxiliary surface may then also be used
for generating additional vertices, if required.

6 Conclusion

As demonstrated in this paper, using Clough—Tocher—type LN macro elements it is
possible to generate integral spline surfaces with rational offsets. The offset surfaces
can be described by rational triangular Bézier patches of degree 10, however requir-
ing degenerate patches (biangles). Alternatively, in order to avoid the degenerate
vertices, one may use trimmed surface representations, e.g. trimmed tensor-product
patches of degree 10, or regular triangular patches of degree 20.

Unlike the dual approach to PN surfaces, we have used the defining property of
a linear normal vector field as a linear constraint on the space of integral patches.
Consequently, we obtain an integral spline surface that is embedded into a family of
rational offsets. This approach facilitates the construction of surface patches which
are free of singularities, such as cusps and points at infinity.

Further research may focus on the following questions. Firstly, the construction
of cubic LN spline surface of minimum polynomial degree might be of some interest,
as this will help to obtain offset surfaces of lower degree, without need for singular
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parameterization. Secondly, we will try to generalize the result of theorem 6 concern-
ing the regularity of the boundaries to the LN patches themselves. This might be
possible by using more sophisticated techniques for dealing with the resulting linear
system of equations.
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