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Abstract. In the first part of this article we present a method for
generating linear sufficient conditions which guarantee the convexity of
parametric tensor—product Bézier surfaces. The linearized conditions
can be adapted to any strongly convex surface patch.

In the second part we discuss the so—called lifting problem for convex
surfaces. With the help of the linearized convexity conditions this task
can be formulated as a simple optimization problem.

1 Introduction

Tensor—product Bézier and B-spline surfaces are widely used for the description of free—
form surfaces in CAD systems. Convexity of surfaces is an important feature for many
applications, e.g., in the automotive or in the ship—building industry. In order to derive
algorithms for the construction (e.g., by interpolation or approximation of given data)
or for the modification (e.g., “lifting” of these surfaces) of convex surfaces, appropriate
constraints ensuring the convexity of the patches have to be found.

Very strong sufficient convexity conditions for parametric tensor—product Bézier sur-
faces have been derived in Schelske’s Ph.D. thesis [11] (see also [7], p. 263). These con-
ditions are fulfilled only by convex translational surfaces (i.e., by convex surfaces which
are swept out by the motion of a rigid contour curve). Convexity criteria for parametric
triangular Bézier surfaces were developed by Zhou [16]. These conditions lead to systems
of inequalities of degree 3 and 6 in the components of the control points.

More research has been done in the case of (piecewise) polynomial functions. A survey
of convexity criteria for such functions can be found in the articles by Dahmen [1] and
Goodman [6]. As an application of such conditions, approximation by convex piecewise
quadratic polynomials on Powell-Sabin splits is discussed in [15]. Most of these criteria
apply to polynomials in Bernstein—Bézier representation over triangles. A recent article
by Floater [5] discusses convexity conditions for functional tensor—product Bézier— and
B-spline surfaces. It is shown how the convexity of such functions can be guaranteed with
the help of a set of quadratic inequalities for the Bézier coefficients.

In the remainder of this article we derive a method for constructing linear sufficient
convexity conditions for parametric tensor—product Bézier surfaces. The control polygons
of the first and second derivatives are bounded by appropriate wedges. These wedges yield
a set of linear inequalities for the components of the control points. The bounding wedges
for the derivatives are chosen with the help of a convex reference surface.

Using the linear constraints obtained from the method, several tasks of convexity pre-
serving surface construction or modification can be formulated as optimization problems
with linear constraints. As an example we discuss the problem of the convexity—preserving
“lifting” of a single Bézier surface patch. This problem has been discussed by Schichtel
in his Ph.D. thesis [12], see also [13]. We present a new approach which is based on the
linearized convexity conditions.
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2 Preliminaries

Consider a tensor—product Bézier surface patch of degree (m,n),

m n

x(u,v) = Z > B'(u) Bf(v) bij (0 <u,v<1) (2.1)

with the control points b;; € IR® and the well-known Bernstein polynomials B (t) =
(T)t*(1 —t)7~*, see [7]. The first and second partial derivative vectors of this surface are

meo No
xo(u,v) = Z ZB;"<> (u) Bj®(v) Aobyj, < € {u,v,uu,uv,vv} (2.2)
i=0 j=0
with

Aubiyj =m (bi+1,j — bi’j), My, = m—l, Ny =N,

Avbiyj =n (bi,j+1 — biyj), my =m, Ny, = n—l,

Auubi,j = (m—l) (Aubi+1,j - Aub,ﬂ'), Myy = m—2, Nyuy = N, (23)

Aybij =m (Aybiy1; — Aybij), Muy = m—1, Ny =n—1 and

A'vvb'i,j = (n—l) (Avbi,j+1 — Avbi,]‘), Myy = M, Nyuw = TL—2.

The curvature properties of this surface at a point (u,v) € [0,1]? are governed by its
first and second fundamental forms, see [7] or any textbook on differential geometry. The
coefficients (gr,s)r,s=1,2 = (9r,s (4, v))r s=1,2 of the first fundamental form are

91,1 = Xy O0Xy, 01,2 = 02,1 = Xy 90Xy, 22 = Xy 0 Xy, (2-4)

whereas the coefficients (Ly )y s=1,2 = (Ly s(u,v))r s=1,2 of the second fundamental form
result from

1

1
Lii=— D

D

[qu; Xu, XU]J Ly p=Ly;=

[Xuva XU7XU]7 Ly o= [XU’U7XU7X1)]7 (2-5)

D
with D = D(u,v) = ||Xy X Xy||- (We use the notations x oy and x x y for the inner and
cross products of two vectors x,y € R?, respectively. In addition, [x,y,z] = x o (y X z)

and ||x]| = v/xox.)

At a surface point x(u,v) (0 < u,v < 1) we may consider the tangent
x(u,v) + 7 (€ xu(u,v) + 9 x,(u,v) ) (7 € R). (2.6)

Its direction is specified by the real coefficients £, 7. Associated with the tangent we have
the normal curvature (i.e., the curvature of the normal section through the surface with
this direction)

_ € Lia(uv) +2€n Lip() +7° Lap()
& 911(u,v) +2&m g12(.) + 12 g2,2(.)

tin (U, ,&,1) &mn) # (0,00 (2.7

We are interested in methods for constructing or modifying surface patches (2.1) with al-
ways non—negative normal curvature at all points. (Equivalently we may consider surfaces
with always non—positive normal curvature. Swapping the parameters u,v changes the
sign of the normal curvature.) Such surfaces have non—negative Gaussian curvature and
are locally convex, i.e., they are convex in an appropriate neighbourhood of any one of its
inner points (provided that they are regular (D # 0) at this point).
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FIGURE 1. A wedge and its bounding vectors (a) and the cross product of two
wedges (b).

The first fundamental form is well known to be positive definite. Therefore, at a regular
surface point (D(u,v) # 0) having only non—negative normal curvature k,(u,v,&,n) > 0
is equivalent to

[€2 Xuu (1, ) +2 € N X ()10 Xoo (1) %0 (.), X0 ()] > 0. (2.8)

for all £, € IR. We will present conditions for the control points b; ; of the surface (2.1)
which guarantee this property for all points. The expression (2.8) is a quadratic form in

¢ and 7.
In order to describe bounds for the first and second partial derivatives we will use the
following notions. Consider a sequence of unit vectors (B;)i=o, .. from S? C R? (k > 2).

This sequence will be called a (ordered) set of unit bounding vectors of a wedge, denoted
by
<ﬁ0:ﬁ1;"'5ﬁk)a (29)
if it satisfies the following three conditions (cf. Figure 1a):
(a) There exists a vector p € IR® such that the inequalities §;0p > 0hold fori = 0, ..., k.

Thus, all vectors P; lie on one side of the plane perpendicular to p which passes
through the origin O.

(b) The sequence contains no triple of linearly dependent vectors.

(¢) The inequality [ﬁj,ﬁi,ﬁ(i+1)mod(k+1)] > 0 is fulfilled for all 0 < ¢,j < k. Thus, all
vectors f)’]- lie on the same side of the plane spanned by the neighbouring vectors
Pis B(it1)mod(kt1)-

Under these assumptions, the unit vectors (B;)i=o,....x span the wedge (or, the convex cone)

W(B,, - - ,pk)—{erR3|x—ZA,p,w1thA >0,\ € R} (2.10)

= {ReR’|[%, pup(z—i-l)mod(k—i-l)] >0fori=0,...,k}

Note that the ordered sets

— —

(pOapla"'aﬁk>a <ﬁ13ﬁ2"'aﬁkaﬁ0)a <ﬁ2aﬁ3"'af5kaﬁ03ﬁ1>a (211)
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are equivalent, i.e., they span the same wedges.
Now we consider two sets of unit bounding vectors of a wedge, spanning the wedges
P =W(PBy,---,D) and Q@ = W(d,,.-.,q;). We define the cross product of these wedges
by
PxQ={Xx¥|XePandyec Q}, (2.12)

cf. Figure 1b. Provided this set forms again a wedge (which is the case if the vectors

{Pixq;|i=0,.,kj=0,.,1} satisfy condition (a)), then its unit bounding vectors are

an appropriately ordered subset of {% | ...}. We denote this ordered set (which is
iX9q;

unique up to the choice of the first vector) by

(To,T1,...,F2) = (Bg,B1y---» B X (Ao, 41,--->4;)- (2.13)

3 Sufficient convexity conditions

In the following theorem we present some criteria for the surface (2.1) which guarantee
always non—negative normal curvatures at all points. The conditions described below lead
to sets of inequalities for the components of the control points b; ;. However, in order to
be brief we omit the complete formulation of the inequalities and present only equations of
certain polynomials instead. The inequalities for the control points are easily obtained by
expressing them in Bernstein—-Bézier form with the help of (2.2) and using the well-known
product and degree raising formulas for Bernstein polynomials,

(:1) (:i) BT’1+T‘2

B (t) B2 (t) = &) s1tsa(t) (3.1)
s1+82
and +1 +1
r — S S
Br(t)=——= B™(¢t BT (®). 2
() =" BN+ B (32)

Theorem. Consider a regular tensor—product Bézier surface patch (2.1). If one of the
following three conditions holds, then the surface possesses always non—negative normal
curvatures at all points x(u,v) with parameter values (u,v) € [0,1])2.

(1) (Conditions of degree 6) The Bézier coefficients of the three bivariate polynomials
L1 (u,v) = [Xuu(u; v), Xu (), X0 ()] Koo (-)s Xu(-), X0 ()]
_[XUU(')7Xu(')7X’U(')]27

(3.3)
L2(”7U) = [qu(u,U),XU(U,U),Xv(u,U)] and

L3 (u,v) = [Xyy (4, ), Xy (©,v), Xy (0, v)]

in u,v are non—negative. The Bézier coefficients of the first polynomial L (u,v) lead
to a system of (6m — 3)(6n — 3) inequalities of degree 6 in the control points b, ;,
whereas the coefficients of the polynomials Lo and L3 yield systems of (3m — 2)(3n)
and (3m)(3n — 2) cubic inequalities.

(it) (Cubic conditions) Choose two appropriate finite sequences (s;)io,....p, (tj)j=0,....q
of real numbers with p,q > 2 and

0=s0<s1<...<sp,=1, O0=tp<ti <...<tyg=1. (3.4)
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The Bézier coefficients of the p + q bivariate polynomials

Siva(u,0) = [ (1=8)(1=5:41)%uu(u,0)
+ (8i+8i+1—28i 8i41)Xun (-) + 8i Si+1Xp0 (1) s Xu(-) ; Xu(.) ] and
Tyaa(u,0) = [ (1=t;) (1~t141)Xuu (4, ) (3:5)
= (1 =28 L )Xo () + 4 X (), Xa(), Xo() |
(i=0,...,p—1;j=0,...,¢-1)

in u,v are non-negative. This leads to a system of 9mn (p + q) cubic inequalities
for the components of the control points of the surface.

(#4i) (Linear conditions) Choose two appropriate ordered sets (Bg, P, ---, Pr) and {(dg, dy, ---, d;)l}
of unit bounding vectors of two wedges. The cross product of the two wedges exists
and its bounding vectors are denoted by (To,T1,...,T2), ¢f. (2.13). In addition, con-
sider again the real numbers s;,t; as introduced in ().

The Bézier coefficients of the (k + 1) + (I + 1) bivariate polynomials

Pi(uav) = [Xu(u7U)7ﬁi7ﬁ(i+1)m0d(k+1)] i=0,...,k

. , (3.6)
Qj (’LL, U) = [X’U (u7 1}), q;, q(j+1)m0d(l+1)] J=0,... Jl

in u,v are non—negative. Moreover, the Bézier coefficients of the (z + 1) (p + q)
bivariate polynomials

S’h,i“(u,v) = ( (1—83)(1=8441)Xyu (u,v)
+ (8i+8i+1—28i 8i1+1)Xuv () + 8i Sit1Xuw(.) ) oty and
T (1,0) = ((1=t) (1=t 1) %uu (1,0) (3.7)
= (41 =2t 1 )Xo () + 4t X0 () ) 0 B
(i=0,...,p—1;j=0,...,¢-1; h=0,...,2)

in u,v are non—negative too. The Bézier coefficients of the polynomials P; and Q;
leads to systems of m(n+1)(k+ 1) and n(m+1)(1+ 1) inequalities, whereas the two
polynomials in (3.7) yield another system which consists of (m+1)(n+1)(z+1)(p+q)
inequalities. All inequalities are linear in the components of control points of the
surface (2.1).

Proof. (i) Resulting from the non—negativity of their Bézier coefficients, the polynomials
Ly (u,v), La(u, v), L3(u, v) have non—negative values for all 0 < wu,v < 1. As

L = det ([xuu;xu;xv] [xuvaxu;xv]) >0 (38)

[Xuv; Xus Xv] [va; Xus Xv]

holds, both eigenvalues of the 2 x 2 matrix are either non—negative or non—positive. This
implies together with Ly > 0 and L3 > 0, that the quadratic form (2.8) is non—negative
definite.

(i1) Again, due to the non—negativity of their Bézier coefficients, the polynomials S 1 (u, v), Tjt1(u, v)}}
have non—negative values for all 0 < u,v < 1. We consider an arbitrary fixed point
(u,v) € [0,1]?. The quadratic form (2.8) is homogeneous in ¢ and 7, therefore it suffices
to consider only the tangent directions (2.6) with (£,1) = (£,1—¢&) or (§,n) = (§,—-1+&)
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FIGURE 2. Tangent directions (§,1 — &) and (§,—1+¢&) with 0 < ¢ < 1.

and 0 < ¢ <1, see Figure 2. Consider the first set of tangents. By substituting n =1 —¢,
the quadratic form (2.8) is transformed into

Q) = [Bg(f) Xyu + B%(E) Xup + Bg (&) Xpv > Xu Xv] (3.9)

with the quadratic Bernstein polynomials BZ(£). For any £ € [0,1] values sj,s;+1 with
s; < € < sjp1 exist. Computing the Bézier representation of the polynomial Q(§) with
respect to the interval [s;, s;41] C [0, 1] yields

_ 9 é‘_s. 9 E—S 9 §—S‘
QO = 0 B2 O B P G B P (10

with the three coefficients

Co = [(l—sj)2 Xyu+2 85 (1—s;) xuv+s? Xyu, xu,xv] , (3.11)
C1 = [(1=s;)(1—8j+1) Xyu+(8j+8j41—2 8j Sj41) Xyv+5j 841 Xpv, Xy, Xy (3.12)

and
Cy = [(1—3j+1)2 Xyu+2 $j41(1—8j4+1) Xuv+$§+1 Xyvs Xu, xv] . (3.13)

The coefficients can be generated with the help of the blossom of the polynomial Q (), see
[7]-

The values of the Bernstein polynomials Bf(fj;‘:—fglj)
holds. The middle coefficient C; is guaranteed to be non—negative, due to Sj1 (u,v) > 0.

Assume j > 1. Then we have both S;(u,v) > 0 and Sj41(u,v) > 0 which leads to

are non—negative as s; < £ < 841

[(1—5;)(1—=8)Xuu+(54+5—25;8)Xuy+5;8 Xy, Xu,Xy] >0 (3.14)

for § = s;_1 (from Sj(u,v) > 0) and for § = s;;1 (from Sj;1(u,v) > 0). Moreover this
expression depends linearly on 3, hence the inequality is also true for § = s;. Resulting
from this observation, the coefficient Cj is non-negative for j > 1.

For j = 0 we get from S (u,v) > 0 and T3 (u,v) > 0 the inequalities

[(1 — $1)Xuu + $1Xup , Xu, Xy] > 0 and [(1 — ¢1)Xuyu — t1Xuw 5 Xu, Xy] > 0 (3.15)

(Note so = to = 0). Due to p,q > 2 we have s1,t; < 1, thus we see that the coefficient
Co (which is then equal to [Xyu,Xu,Xy]) 18 non—negative also for j = 0. Similarly it can
be shown that the third coefficient C is always non—negative. Therefore the quadratic
form (2.8) has non—negative values for all tangent directions (2.6) with (£,n) = (§,1 — &)
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and 0 < ¢ < 1. Analogous considerations (based on the polynomials T}j1 (u,v)) prove this
assertion for tangent directions with (§,1) = (§,—1+ &) and 0 < ¢ < 1.

(iii) Once more, the bivariate polynomials P;(u,v), Q;(u,v), Shit1(u,v) and Th j41(u,v)
are guaranteed to have non—negative values for all 0 < u,v < 1, resulting from the non—
negativity of their Bézier coefficients. We consider an arbitrary, but fixed point x(u,v)
with parameters (u,v) € [0,1]?. According to P;(u,v) > 0 and Q;(u,v) > 0, the first
partial derivative vectors x,(u,v) and x,(u,v) are contained in the wedges spanned by
(Bo;B1,---, Bk and (dy,d;,---,4;), respectively, see (2.10). Thus, their cross product
Xy (U, ) X X, (u, v) is contained in the wedge spanned by (¥o,T1,...,T,). Therefore we can
find real coefficients (g, ...,(, > 0 such that

Xu (U, v) X x,(u,v) = Z Ch Th (3-16)
h=0

holds. From S iy1(u,v) > 0 and using the definition of the bracket product [.,.,.] we
conclude that the polynomials S;11(u,v) from (3.5) fulfill the inequalities

Sip1(u,v) = ((1=8;)(1=8i41)Xuult, v) + ($i+8i41—2 8; Sit1)Xuo(-)
+ 8 Sit1Xuu(.) ) 0 2 (T
h=0

) (3.17)
Ch Shiv1(u,v)

M«

0

Tl
-

I
o
N
—

>

Analogously we obtain Tjyq(u,v) >0 (j =0,...,¢—1). Now we use again the arguments
presented previously in (i7). So we conclude that the quadratic form (2.8) is non—negative
definite for all points x(u,v). This completes the proof. O

Whereas the convexity conditions () lead to a system of inequalities of degree six in the
components of the control points, the inequalities which result from (47) are cubic and those
obtained from (7i¢) are only linear. The latter inequalities are much better suited for using
them in an optimization process. Together with an appropriate objective function they
lead to linear or quadratic programming problems which can be solved with the help of the
powerful tools from optimization theory. This will be illustrated by discussing the lifting
problem in the next section. In contrast with this, using the cubic or even the degree 6
inequalities will always lead to a nonlinear problem.

However, the linear and cubic conditions require some constants which have to be cho-
sen. This can be done automatically with the help of a reference surface. For instance,
the initial surface of a modification may serve as such a reference surface. The set of unit
bounding vectors of a wedge (Bg, B1, - - - , i) and (T, d1, - - - , 4;) are found from the wedges
spanned by the control points of the first partial derivatives. These wedges are enlarged
in order to provide enough degrees of freedom for the optimization. The real numbers
(8i)i=o0,...,p and (t;)j=o,...,q result from an adaptive refinement of the Bézier representa-
tions of the polynomials Q (&) (which appear in the proof of (i7)) and the corresponding
polynomials for the second set of tangent directions.

Any surface (2.1) with strictly positive Gaussian curvature can be subdivided into a
finite number of subsegments, such that the convexity can be guaranteed with the help of
the conditions obtained from the above theorem. This results immediately from the fact,
that iterated subdivision implies convergence of the control polygons to the derivatives.
Moreover, if we increase the number of the knots (s;)i=o,...,, and (¢;);=o,...,q and distribute
them uniformly over the unit interval [0, 1], then the Bézier coefficients of the polynomials
Sit1(u,v) and T} yq(u,v) converge to the values of the quadratic form (2.8).
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The approach presented in the theorem for generating linear convexity conditions in
some sense decouples the first from the second partial derivatives. More precisely, both
derivatives are bounded by certain wedges: the first derivatives by those described by the
inequalities obtained from the Bézier coefficients of P;(u,v) and Q;(u,v), and the second
(directional) derivatives by the the wedges described by the inequalities obtained from the
Bézier coefficients of Sy, ;1+1(u,v) and T j41(u,v). As the main advantage, any computa-
tion for these wedges (e.g., convex hull computations) can be reduced to a computation
with planar polygons.

As a different approach one could also try to bound the control polygons of the deriva-
tives by appropriate polyhedrons. But computations for polyhedrons in 3—space are much
more complicated. For instance, the convex hull of a planar point set can easily be found,
whereas the analogous problem in 3—-space is more difficult. So the presented approach
seems to be the more natural one.

Of course, it is possible to apply the above theorem to tensor—product Bézier functions
f(u,v), ie., to bivariate polynomials, simply by choosing the parametric representation
x(u,v) = (u v f(u,v))T. Then the conditions obtained from the first part (i) form a
system of quadratic inequalities, whereas those obtained from the second part (i) are
even only linear in the Bézier coefficients.

4 An application: Lifting of Bézier surfaces

In this section we illustrate the convexity conditions of the theorem by an application. Let
a convex surface patch, e.g., a tensor—product Bézier patch (2.1), be given. This surface
is to be modified, by pulling one ore more points upwards or pushing them downwards,
This modification is to preserve the convexity of the surface. Moreover, certain boundary
conditions are to be satisfied (e.g., the first partial derivatives along the boundaries are to
be kept).

This kind of problems, called the “lifting” of a surface, may arise in the design process of
car body surfaces or also ship hulls. It has been discussed by Schichtel in his Ph.D. thesis
[12] using a different approach, see also [13]. Schichtel introduces an auxiliary surface
which is non—convex in general. The auxiliary surface fulfills the boundary conditions
and its shape reflects the intended result of the lifting. The one—parameter set of convex
combinations of the original surface and the auxiliary surface is examined and the subset
of convex surfaces is identified. In this step one has to solve a nonlinear programming
problem. Schichtel proposes to use a simple gradient method. According to the magnitude
of the desired magnification, a surface from this subset of convex surfaces is chosen as the
result of the lifting procedure. As a drawback of Schichtel’s method, the result depends
on the choice of the auxiliary surface.

4.1 The method

We present another algorithm which is based on the previously derived convexity condi-
tions.

1.) Choose the initial surface (which is assumed to be strongly convex) as a reference
surface and generate linear sufficient convexity conditions, based on part (iii) of
the above theorem. For generating the constraints we have to subdivide twice. At
first, the surface patch is subdivided into smaller patches, with the help of the de
Casteljau scheme. The Bézier coefficients of the sub—patches are certain constant
affine combinations of the original coefficients. This subdivision stops,
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— if bounding wedges {By, P1, ---, Bg) and {dg,d;, -..,q;) for the control polygons
of the first derivatives can be found such that the cross—product (%o, 1, ..., T.)
of these wedges exists, and

— if the Bézier coefficients with respect to (u,v) of the z + 1 bivariate polynomials
(B3 (&) Xuu(u,v) £ BY(€) Xuu(-) + B3 (€) Xpu() ) o1 (i =0,.,2)  (4.1)

possess strictly positive values for all £ € [0,1]. For fixed £, the expression
(4.1) is a bivariate polynomial of degree (m,n) which depends on the surface
parameters u and v. The polynomials with the + and — sign arise from the of
the tangent directions (£,1 — &) and (£, —1 + &), respectively.

The bounding wedges for the first derivative vectors are slightly enlarged in order
to ensure that the subsequent optimization finds enough degrees of freedom at its
initial point.

In the second step, the polynomials (4.1) are subdivided with respect to £ until all
resulting Bézier coeflicients with respect to &, u and v are positive. This subdivision
produces the two knot sequences (s;)io,...,, and (t;);=o,....¢-

Choose an appropriate objective function. For instance, if the surface point x(0.5, 0.5)}]
is to be pulled into the direction 1, then one may choose the objective function

|1%(0.5,0.5) — (Xinitia1 (0.5, 0.5) + 1)||> + A (regularizing term). (4.2)

The vector I € R is called the lift vector. A similar objective function can be used if
more than one surface point is to be lifted, as depicted in [12, p. 73]. The regularizing
term has been introduced in order to guarantee that the gradient of the objective
function possesses maximal rank. For example, one may use the sum of the squared
lengths of the control net,

m n—1 m—1 n
DD bigri=bisl* + D > Ibir,i bl (4.3)
i=0 j=0 i=0 j=0

The weight A € IR is chosen such that the regularizing term contributes very little
to the value of the objective function, compared with the first part.

The objective function (4.2) is a quadratic expression in the components of the
control points b; ;.

The control points of the modified surface are computed by minimizing the objective
function (4.2) subject to the linearized convexity conditions obtained from 1.) and
to boundary conditions. For instance, in the case of C' boundary conditions we
keep the first two rows of boundary control points of the surface. This quadratic
programming problem (i.e., minimization of a quadratic objective function subject
to linear equality and inequality constraints) can be solved exactly in finite time
(at least theoretically), see e.g. the textbook by Fletcher [4]. Our implementation
is based on an active set strategy as described in [4]. As an alternative one may
use an interior point method like that of the LOQO package by Vanderbei [14]. In
our examples, however, we obtained better results with the help of the active set
strategy. This method generalizes the simplex algorithm to the case of a quadratic
objective function. The reference surface serves as initial point for the optimization.
In order to avoid degenerate situations it is of crucial importance to detect and to
remove dependencies of the set of constraints as far as possible.
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FicURE 3. Convexity—preserving lifting of Bézier surfaces:the original surface.

4.) Check, whether a sufficiently large modification of the surface has been achieved.
If not, then one may iterate the whole construction by choosing the result of the
optimization as a new initial surface (— 1.). One should also check whether the
surface possesses enough degrees of freedom, such that the intended modification
can be achieved.

On the other hand, if the modification is too big, then one may consider the one—
parameter set of convex combinations of the initial surface and the modified surface.
All these convex combinations are guaranteed to be convex as they fulfill the lin-
earized convexity conditions. One of them is chosen as result of the lifting procedure,
according to the magnitude of the intended modification.

4.2 An example

In our example, the initial surface is chosen as a biquartic tensor—product Bézier surface
patch. Figure 3 shows the original surface and its control polygon. The curvature is
visualized by some ellipses in the tangent planes of the surface. The principal diameters of
the ellipses indicate the principal curvature directions, their length is proportional to the
corresponding principal curvatures (which are the extreme values of the normal curvatures
at this point). Hence, the area of the ellipses is proportional to the Gaussian curvature.
Note that these ellipses are not the Dupin indicatrices of the surfaces; these indicatrices
would result by choosing the length of the diameters proportional to the principal curvature
radii (but this causes problems for the visualization if the curvatures are rather small).
Moreover the Figure also shows some contour lines z = constant of the surface (stepsize
0.05). Note that the surface is not symmetric! The Gaussian curvature K (u,v) has been
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FIGURE 4. The surface after lifting with lift vector (00 5)"
subject to C°® boundary conditions.

plotted in Figure 6a. Its values vary between 0.247 and 1.172.

At first we modify the surface by pulling its point x(0.5,0.5) upwards, whereby the
boundary curves (i.e., the boundary control points) are kept. Using an automatic proce-
dure as outlined in 1.) we find linear sufficient convexity conditions according to part (7i)
of the theorem. This leads to a system of 472 inequalities for the 27 unknown components
of the inner surface control points.

The control points of the modified surface are found by minimizing the objective func-
tion (4.2) subject to convexity and boundary conditions. The lift vector I = (0 0 5)7
indicates the direction of the desired modification.

In the first iteration of the above-described method, the surface point x(0.5,0.5) is
moved from (0.1 —0.1 0.992)T to (0.105 —0.105 1.096)T. The Gaussian curvature now
varies between 0.210 and 3.999.

In order to improve the obtained result we iterate the whole procedure. The modified
surface serves as a new initial surface patch. For finding linear convexity conditions ac-
cording to part (i4i) of the theorem, the surface patch now has to be subdivided into 7
segments. We obtain a system of 5942 inequalities for the 27 unknowns. Minimizing (4.2)
subject to these constraints yields the surface which is depicted by Figure 4. The point
x(0.5,0.5) is now at (0.105 —0.105 1.108 ). The Gaussian curvature (see Figure 6b) varies
between 0.08 and 4.426, its minimum occurs in one of the corners where the surface has
an “almost parabolic” point. The ellipses in Figure 4 clearly visualize the modified cur-
vature distribution. Also the Gaussian curvature plot in Figure 6b shows some significant
changes.

In a second experiment we try to push the surface downwards. The degree of the
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FIGURE 5. The surface after lifting with lift vector (00 —5)7
subject to C'!' boundary conditions.

initial surface patch is raised to (5,5) first. The modified surface is found be minimizing
the objective function (4.2) with lift vector (0 0 —5)T subject to C' boundary conditions
(i.e., the first two rows of boundary control points remain unchanged) and convexity
constraints. The generation of linear sufficient convexity conditions is iterated three times
and leads to quadratic programming problems with 240, 2902 and 10 080 linear inequalities
and 12 unknowns. The result is shown in Figure 5. The modified surface point x(0.5,0.5)
is now at (0.101 —0.102 0.928)T. The Gaussian curvature of the modified surface (see
Figure 6¢) varies between 0.004 and 2.535, with the minimum in the central region of the
surface. The modified surface has almost flat points in this region. The new curvature
distribution is visualized by the ellipses in Figure 5 and can also be seen from the Gaussian
curvature plot in Figure 6c.

The computing time in these examples was in the order of a few minutes. As observed
in the experiments, if the surface is close to its extreme shape (indicated by surface regions
with K = 0), then the number of inequalities explodes. One should therefore restrict the
number of permitted subdivisions. The biggest modification of the shape is often achieved
in the first step of the iteration, whereby the number of inequalities is relatively small.

5 Concluding remarks

In this article we described a method for the generation of linear constraints which guar-
antee the convexity of parametric tensor—product Bézier surfaces. This method can easily
be generalized to tensor—product B-spline surfaces. Instead of the simple formulas (3.1)
and (3.2) one has to use the analogous identities for B-splines, see [10]. As an alterna-



12 Jittler

FIGURE 6. The Gaussian curvature of the original surface (a), after lifting it upwards
(b), and after lifting it downwards (c).

tive one may represent a B-spline surface as a collection of Bézier surfaces and apply the
above-described methods to the single patches.

With the help of the linearized constraints it is possible to formulate several tasks of
surface construction or modification as a sequence of optimization problems with linear
constraints. This has been illustrated by the convexity—preserving lifting of parametric
Bézier surfaces.

A similar approach to shape preserving approximation by planar B—spline curves has
been derived in [8]. That article generalizes an algorithm proposed by Dierckx [2, 3] to the
case of planar parametric curves.

Based on linear convexity conditions for spline functions, an algorithm for least—squares
approximation of functional data by tensor—product spline functions subject to piecewise
convexity/concavity conditions has been developed in [9]. Unlike the functional case,
linearized convexity conditions for parametric surfaces require a reference surface which
specifies the expected shape. Moreover, convex spline functions form a convex set, whereas
convex parametric spline surfaces do not. In order to develop an algorithm for shape—
preserving approximation by parametric surfaces one has to find a construction of an



Mathematics of Surfaces VII 13

appropriate reference surface at first. For instance, one might choose the result of the
functional approximation as such a surface. This, however, will fail for non—functional
data.
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