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We present an algorithm for fitting implicitly defined algebraic spline surfaces
to given scattered data. By simultaneously approximating points and associated
normal vectors, we obtain a method which is computationally simple, as the re-
sult is obtained by solving a system of linear equations. In addition, the result is
geometrically invariant, as no artificial normalization is introduced. The potential
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verse engineering. The paper also addresses the generation of exact error bounds,
directly from the coefficients of the implicit representation.
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1. Introduction

We describe computational techniques for reconstructing surfaces from scat-
tered data in 3D. This surface fitting problem arises in the context of the pro-
cess of reverse engineering. Due to the recent progress in the technology of 3D
scanners, even complex objects can now be digitized with impressive accuracy.
Consequently, reverse engineering of free—-form shapes becomes an increasingly
valuable alternative to the standard top—down engineering process in Computer
Aided Design.

In the sequel we use implicitly defined algebraic spline surfaces for gener-
ating free—form surfaces. Traditionally, most CAD systems rely on parametric
representations, such as NURBS surfaces, see [7,12]. When compared to these
representations, the use of implicitly defined surfaces offers a number of advan-
tages.

* The research described in this paper was partly done within a project leading to the Master
thesis of the second author [8]. The financial support by Holometric Technologies GmbH
(Aalen, Germany) is gratefully acknowledged.
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First, in order to use the algorithms for surface fitting with parametric
representations, one always has to assign auxiliary parameter values to the data.
This is often done by projecting the data into some auxiliary surface [18]. A
more sophisticated method has recently been described in [9]. The estimated
parameters have a strong influence to the resulting shape, and the generation of
suitable values can sometimes be difficult, in particular for more complex shapes.
Clearly, the parameterization will have problems if the shape of the data is not
compatible with that of a segment of the plane. As a major advantage of algebraic
(spline) surfaces, these parameters are not needed in the implicit case.

Second, the problem of implicit surface fitting can be solved without generat-
ing a triangulation of the 3D data. Although algorithms for generating triangular
meshes from scattered data have made some progress (in particular due to recent
advances in Computer Graphics), ‘meshless’ techniques may help to circumvent
the various computational issues associated with triangular meshes. (It should
be noted, that the parameterization can be generated even without an auxil-
iary triangulation, using a meshless technique [9]. However, many techniques for
parameterization assume the existence of a triangulation.)

Third, shape constraints (e.g., convexity conditions) for implicitly defined
spline surfaces are much easier to deal with than in the parametric case. For
instance, the convexity of an algebraic spline surface can be guaranteed by the
convexity of the underlying spline function, see [13] for suitable linear criteria.
Convexity conditions for truly parametric representations, by contrast, are highly
non-linear, see [16]. Consequently, it is relatively easy to introduce shape con-
straints to the framework of implicit spline surface fitting. Typically, this pro-
duces optimization problems with linear constraints, which are relatively easy to
deal with.

Other advantages of implicitly defined shapes (not directly related to surface
fitting) include the possibility to define solids, simply be evaluating the sign of
the generating real function, and availability of simple algorithms for computing
the intersection(s), e.g., with straight lines.

On the other hand, the use of algebraic spline surfaces leads to some ad-
ditional issues which have to be addressed. For instance, special algorithms are
needed for visualizing and evaluating these surfaces, such as marching cubes,
cf. [6,12]. Also, in order to exchange data with industrial CAD systems, the im-
plicitly defined surfaces have to be converted into parametric (NURBS-) format.

Various methods for implicit surface fitting have been described in the vast
literature on the subject, see [2,19,22] and others. Most of these methods use the
so—called algebraic distance and combine it with a suitable normalization of the
coefficients.
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For instance, Pratt (‘simple fit’ method, [19]) introduces a linear normaliza-
tion, by keeping the value of one of the coefficients. Clearly, this normalization
has no geometric meaning, as it depends on the choice of the coordinates.

In order to obtain a geometrically invariant normalization, Taubin [22] con-
strains the sum of the squared gradients at the data sites. Minimizing the alge-
braic distance then produces a constrained quadratic programming problem. The
solutions are found by (numerically) solving a generalized eigenvalue problem.

Recently, the methods of Pratt and Taubin have been compared by Uma-
suthan and Wallace [23].

Bajaj and various co—authors [1,4] have developed implicit algebraic surfaces
into a powerful tool for surface design. Their approach is mainly based on low—
degree patches, where the coefficients are made to satisfy certain sign conditions,
in order to guarantee the desired topological structure.

Werghi et al. [25] have developed an incremental framework, incorporat-
ing geometric constraints (such as orthogonality), for fitting implicitly defined
geometric primitives, such as planes and quadrics.

In this article we describe a new technique for surface fitting with algebraic
spline surfaces. We consider a set of points

P; = (Pi,1,pi2,Pi3) € R} i=1,...,N. (1)

A typical data set, consisting of 16,500 points, is shown in Figure 1.

Figure 1. The data set, consisting of 16,500 points (Courtesy of Holometric Technologies GmbH).

As a preprocessing step we estimate normal vectors @i; which can be associ-
ated with the given data. Then, an algebraic spline surface

{(z1,22,23) | f(z1,22,23) =0, (r1,22,23) € Q} (2)
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(where f(.) is a trivariate real spline function with domain Q C R?) is generated
by simultaneously approximating both the data and the associated normals. This
approach avoids the use of an artificial normalization. Consequently, the method
is both computationally simple (as the result is obtained by solving a system of
linear equations) and geometrically invariant.

A similar algorithm for scattered data fitting with planar algebraic spline
curves has been described in the conference article [15]. In the present paper we
generalize it to the surface case.

In the final section of the paper, we address the generation of exact error
bounds, directly from the coefficients of the implicit representation.

2. Preprocessing: Estimation of associated normal vectors

The estimation of normal vectors @i; = (n;1,mni2,n:3) € S% i =1,...,N,
where S? is the 3D unit sphere, from the given scattered data (1) is a well-known
problem. In many cases, the normal vectors can be obtained from additional
information. For instance, if the points p; are generated from a certain 3D scalar
field, such as in Computer Tomography, then the normal vectors could be chosen
as the (normalized) gradients of the scalar function.

Alternatively, the normal vectors can be estimated from the data. As a
simple approach, one may use — for each point p; — the normal vector 1; of a
local plane of regression P;. Let (p;);en;. be the set of the neighbouring points,
possibly with associated non—negative weights. One may choose a fixed number
of closest neighbours to p;, or all points within a certain neighbourhood of p;.
Clearly, one has to use efficient techniques for structuring the data, in order to
find the neighbouring points in reasonable computing time, cf. [20]. The normal
vector of the plane of regression is the eigenvector associated with the smallest
eigenvalue of the real 3 X 3 matrix

> (pi-p)pi—-p)', (3)

JEN;

where p; is the center of gravity of the (possibly weighted) point set (p;)jen;,
and coordinate vectors are chosen to be column vectors. Its computation involves
the (numerical) solution of a cubic equation.

This simple estimate can be improved by using a more sophisticated local
surface of regression, providing more degrees of freedom. For instance, one may
use the graph of a quadratic polynomial, defined over the local plane of regression
(that is, a paraboloid with axis 1;). See [15] for the analogous technique in the
planar situation.
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In order to get useful results, we need to make sure that neighbouring normal
vectors point approximately into the same direction. More precisely, the inner
products 1i; - ii; of normal vectors associated with neighbouring points should be
non—negative. As the estimated normals obtained from the plane of regression
will be randomly oriented, some of them have to be swapped. In our current
implementation of the method, we use a simple region—growing technique in order
to guarantee the desired orientation.

With the help of the local planes of regression, we have estimated normal
vectors for the 16,500 data from Figure 1. The result is shown in Figure 2. The
local planes of regression have been computed using the 25 closest neighbours of
each point.

Figure 2. The associated normal vectors.

The number of neighbours which should be used for estimating the normal
depends on the local distribution of the data. In our example, most data are
organized in scanlines. Hence, in order to get a stable estimate, the number of
neighbours should be large enough such that data from more than one scanline
is used. The process of choosing a suitable number of neighbours can partly
be automatized by taking the ratio of the first two smallest eigenvalues of the
matrix (a ratio which is close to 1 corresponds to an instable estimate, hence the
number should be increased) and the distances of the points from the local plane
of regression (if the distance is too large, then the number should be decreased)
into account.
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Figure 3. The figures show all boxes which contain data. The domain Q of the tensor—product

spline function (4) consists of all theses boxes, and all the neighbouring ones.
3. Algebraic tensor—product spline surfaces

The algebraic spline surface is defined as the zero level set (2) of a tensor—
product spline function of (tri-) degree d (d > 2),

flz,y,2) = ) My(z) Nj(y) Ox(2) cijx (4)
(4,4,k)ET

with the real coefficients (control points) ¢; j, where Z C Z3 is a certain index
set, see below. The basis functions (M;(z))i=1..m, (Nj(y)j=1..n), and (Ok(2)k=1..0)
are B-splines of degree d with respect to the knot sequences X = (&;)i=1..m+1,
Y = (nj)j=1.n+1, and Z = ({k)k=1..04+1 , see [5,12]. We choose the first and
last d + 1 knots of the knot sequences X, ) resp. Z as the vertex coordinates
of the slightly enlarged (blown up) bounding box of the data (p;);=1,..n. The
remaining inner knots are equidistant.

The knot sequences define a partition of the (slightly enlarged) bounding box
(€1, Emtdr1] X [N, M+d+1] X [C1, Cotra+1]) into rectangular boxes. Generally, most of
these boxes do not contain any data. The domain Q of the tensor—product spline
function (4) is the union of all cells that contain data, plus all neighbouring boxes,
cf. Figure 3. If the data have been sampled from an existing surface, and if their
distribution is not too irregular, then this choice should be sufficient to construct
a reasonable approximating spline surface. Otherwise, further boxes have to be
added. The summation in (4) includes all products M;(z) N;(y) Ok(z) that do
not vanish on the domain (2, i.e.,

Z=A{(i5,k)|3le{l,.. N}y re{l,.,m},se{l,.,n},t€{1,..,0}:

5
My(ps) Napr2) Oulpa) #0 A ma{li —rly|j — sy [k —t} <1}, O
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The number of degrees of freedom (and hence the numbers m,n, o of B-splines)
depends on the knot spacing. Clearly, there is a tradeoff between efficiency and ac-
curacy, as smaller boxes may lead both to more accurate results and to increasing
computing times. Although an initial estimate can be generated automatically,
the optimal choice still requires some user interaction (similar to the situation for
parametric surface fitting).

Clearly, the partition of the space into rectangular boxes, and hence the
domain Q of the tensor—product spline function (4), depend on the choice of
coordinates. If a geometrically invariant choice is needed, it can easily be obtained
with the help of the eigenvectors of the matrix of inertia of the data.

The use of tensor—product spline offers several advantages, including simple
implementation, simple conditions for global smoothness and differentiability,
simple evaluation, sufficient flexibility and refinability (e.g. using hierarchical B-
spline representations, see [10]). However, as a certain disadvantage, the segments
of the resulting spline (2) are algebraic surfaces of the relatively high order 3d.

In order to keep the algebraic order as low as possible (if needed), it would be
more appropriate to choose a trivariate spline function of total degree d, defined
with respect to a partition of space into tetrahedra. For instance one may choose
3D Powell-Sabin elements or simplex splines, see e.g. [11,12]. We preferred to
use the tensor—product representations, as the resulting data structures are far
simpler than in the tetrahedral case.

Within the tensor—product setting, a lower algebraic degree can be guaran-
teed by introducing additional side-conditions. For instance, the zero level set (2)
of a triquadratic tensor—product spline which satisfies the linear constraints

fmmy:fzzz:fmyy:fyyz:fyzz:fyzz:fmyzzo (6)

is C! spline surfaces of algebraic order 2, i.e., C' quadric spline surface. These
constraints, however, lead to a highly redundant representation.

Alternatively, one may easily convert tensor—product spline surfaces approx-
imately into lower order algebraic spline surfaces, with any desired accuracy. For
instance, this can be achieved with the help of Powell-Sabin-type or Clough-
Tocher—type 3D Hermite interpolants which are defined with respect to a suitable
tetrahedralization of the 3D domain.

The approximation method which is described in the next section can be
applied to any implicitly defined algebraic spline surface, not only to surfaces
in tensor—product representation. Due to the use of tensor—products, the imple-
mentation of the method is relatively simple. The results, however, depend on
the choice of the system of coordinates (unless we choose the coordinates with
the help of the matrix of inertia, as outlined before). Note that this dependency
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is caused only by the choice of the space of functions, not by the approximation
method. For instance, applying the approximation method to trivariate polyno-
mials of total degree d (instead of spline surfaces) leads to geometrically invariant
results.

4. Surface fitting

We compute the coefficients (Ci,j,k)(z’,j,kz)el' of the tensor—product spline func-
tion f by minimizing a quadratic objective function. In order to simplify nota-
tions, the spline coefficients (in a suitable ordering) are gathered in a (column)
vector c.

4.1. Approzimating the data and the normals

First we consider the data (p;)i=1,...~v and the associated normal vectors
(fi;)i=1,.,~. In order to approximate the data we will minimize the sum of the
squared ‘algebraic distances’ (see [19,22]),

N
Lie) =Y [ f(pi1pi2pis) 1. (7)
=1
This gives a quadratic form, L(c) = ¢'Qc. Its minimizer is the null vector

(¢i,jk = 0)iez, corresponding to the trivial spline function f(z,y,z) = 0.

In order to get useful results, one has to introduce a suitable normalization.
Several techniques have been described in the literature [2,19,22], most of them
based on a suitable norm in the coefficient space. We will use a different approach.
In addition to the quadratic form L, we minimize the sum

N
M(c) =" |l V£(pi,1,pi2,pi3) — i |I°
i1

N
=3 (fo(pir,pi2, pi3) — nin)” + (fy(pi, pig, pi3) — ni2)’
=1
+(f2(Pi,1, pi2spig) — mig)?

Consequently, the gradients V f = (fy, fy, f.) of the tensor—product spline func-
tion f(z,y,z) at the given data p; will match the estimated normal vectors ;.
Note that the given (estimated) normals 1i; are unit vectors. Consequently, the
algebraic distances in (7) can be expected to approximate the real distances. See
Section 5 for more information on distance bounds for implicit representations.
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4.2. Adding Tension

Minimizing a weighted linear combination of L and M may lead to a
singular system of equations, as it may happen that some of the products
M;(z) Nj(y) Ok(z), (i,7,k) € Z, of basis functions vanish on all data, cf. (5).
Even if the system has full rank, the approximating spline surfaces may split into
several disconnected components. In order to resolve these problems, we add
a simple ‘tension term’ that pulls the approximating surface towards a simpler
shape. If the influence of this tension term (governed by a non-negative weight)
is strong enough, then the approximating surface has the desired topology and
the linear system is non-singular.

A possible quadratic tension term is

) = [[[ rar2sd vy + 22 ph 4 o dydz, ()
Q

measuring the deviation of f(z,y, z) from a linear function. Hence, by increasing
the influence of this tension term, the resulting spline becomes more similar to a
plane.

In addition to the global tension term one may use data-dependent tension
terms, similar to the ones used in [15], or higher—order terms, involving deriva-
tives of higher than second order. As another straightforward generalization, the
tension can be localized by inserting a non-negative weight function w(z,y, z) in
the integral (9).

4.8. Solving the surface fitting problem

The coefficients (c; j k)i jk)ez are computed by minimizing the weighted
linear combination

F(c) = L(c) +w; M(c) +ws G(¢) — Min, (10)

see (7), (8) and (9), with certain non-negative weights w; and ws. This leads to
a quadratic objective function of the unknown control points ¢ = (¢; ;) (i,jk)ez-
Consequently, the solution can be found by solving the sparse linear system of
equations

0
0¢i 5k

F(C) =0, (iaja k) €1, (11)

with the help of appropriate methods from numerical linear algebra. Alterna-
tively, one may also compute the solution of (10) by generating an overconstrained
system of linear equations, and computing a least—squares solution to it using QU
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factorization, see e.g. [5]. As another possibility, an approximate solution can be
found with the help of quadratic programming tools such as Vanderbei’s LOQO
package [24].

As a first advantage of our approach, the simultaneous approximation of
points and normal vectors helps to keep unwanted branches away from the ap-
proximating surface. This is demonstrated by the curve example shown in Fig. 4,
where we computed various approximations of a planar data set (points with
associated normals, shown in grey) by the zero contour of a bicubic polyno-
mial. The curves in the first three figures have been generated by minimizing
the objective function (10) for three values of wy, leading to systems of linear
equations. The weight wo of the tension is either 0 (low tension, marked by ‘I’),
0.01 (‘m’edium tension), or 0.1 (‘h’igh tension). The curves in the fourth figure
are obtained by minimizing the objective function (10) with w; = 0, but subject
to the quadratic normalization SV |1V f(pi,pi2,pi3)||> = 1, which leads to a
generalized eigenvalue problem (Taubin’s method [22]). Without tension (‘1’),
the result of Taubin’s scheme splits into a curve and an additional closed loop.

T T

i
| | |
| | |

| |

\ \ W

wl=0. 0001 wl=0. 001 wl=0. 01 Taubi n’ s net hod

Figure 4. Influence of the weights wi, w2 and comparison with Taubin’s method. The weight
wo of the tension term takes the values 0 (‘'ow), 0.01 (‘m’edium), and 0.1 (‘h’igh).

The figures illustrate the effects which can be achieved by various weights
wy and ws. Increasing either weight pushes unwanted the branches of the curve
away. The weight w controls the influence of the estimated normals. The tension
term G (associated with ws) tends to flatten the curve. With the help of the first
weight, we may obtain useful results without having to resort to flattened shapes.

Clearly, the automatic choice of the weights is a challenging problem, as
the optimal values depend on the shape and the level of noise present in the
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data. This is similar to the choice of tension parameters for parametric surface
fitting with “fainess functionals”. Currently, the optimal choice is determined by
numerical experiments involving user interaction. A semi-automatic heuristical
choice should take the variation of the normal vectors and the presence of un-
wanted branches (which can be checked using positivity criteria for the directional
derivatives) into account. A high variation should correspond to small values of
w1, and unwanted branches should lead to an increase of both weights.

As a second advantage of our approach, the approximating spline surface
can be found by solving a system of linear equations. This is to be compared
with the normalization—based methods [19,22], where the solution is computed by
solving a generalized eigenvalue problem. Clearly, solving a linear system seems
to be the easier task. By taking the sparsity into account, and using suitable tools
from numerical linear algebra, such as a PCG method (see Chapter 6 of [17]),
it should be possible to achieve a computational complexity of O(h?) for solving
the sparse linear system, where h = |Z| is the number of coefficients. According
to Taubin [22], solving the generalized eigenvalue problem needs algorithms with
complexity O(h3). However, taking again the sparsity into account, and using
more sophisticated tools from numerical analysis, the computational complexity
should be similar to the case of linear systems.

4.4. Ezistence and uniqueness

Under certain mild assumptions, the surface fitting problem (10) can be
shown to lead to a unique solution.

Proposition 1. If the weights w; and wo are positive, then the quadratic opti-
mization problem (10) has a unique solution.

Proof. First we observe that the three quadratic functionals (7), (8) and (9)
are convex functions RZl — R on the coefficient vectors ¢. The intersection
of the three null spaces of the three quadratic functionals is either empty, or
it consists of a single linear function. (E.g., for N = 1, the intersection of the
three null spaces is the unique linear function f with f(p1,1,p1,2,p1,3) = 0 and
Vf(pi1,p1,2,p1,3) = ii1.) Consequently, the weighted linear combination with
positive coefficients wq, wo is a strictly convex function. O

Consequently, the rank of the square coefficient matrix of the linear sys-
tem (11) equals the number of coefficients h = |Z].

The tension term G is the only part of the objective function (10) that acts
on all cells of the domain 2. The other parts act only on cells which contain data.
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Thus, choosing wy = 0 will produce a singular system (11), if at least one of the
products M;(z) N;(y) O(z) vanishes at all data (z,y,2) = (p1,1,P1,2,P1,3)- This
may happen quite easily, as the domain of the spline function f(z,y) consists of
all cells containing data, and the neigbouring cells.

4.5. Ezamples

We have applied the surface fitting procedure to the 16,500 data shown in
Figure 1 with the associated normal vectors shown in Figure 2. The function f
is a tri-quadratic tensor—product spline function; its domain consist of all cells
shown in Figure 3 and all neigbouring cells (the gridsize is 10). The function f is
described by |Z| = 3015 coefficients. The resulting data volume corresponds to a
parametric tensor product surface patch with 32 x 32 control points.

The implicitly defined surface (2) is shown in Figure 5. Its coefficients have

Figure 5. Approximation of the data from Figure 1 with the estimated normals (see Figure 2)

by an algebraic tensor—product spline surfaces of degree 2.

been found by minimizing the objective function (10) with the weights w; = 1
and wy = 0.0001.

The maximum distance error is equal to 2.3 (dimensions of the bounding box
are approx. 200 x 150 x 70). For 80% of the data, the error does not exceed 0.36.

Figure 6 visualizes the distribution of the error. Although the error distribu-
tion is fairly uniform, some regions larger error exist, e.g., along the boundaries
of the trough on top of the object. Adding degrees of freedom locally (e.g., using
a hierarchical B-spline representation, such as spline wavelets) would improve the
result. This will be a possible subject of future research.

In order to illustrate the influence of the tension term (9), we have applied
the method to a set of 2,645 points sampled from the surface of a sphere. The
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Figure 6. Error distribution. The 20 % of the data with an error exceeding 0.36 are shown.
For 105 of them, the error is even greater than 1.00; these points are marked by dodecahedrons,
with the radius equal to 3 x (error — 1).

estimated normal vectors are almost identical to the normals of the sphere. We
computed two different solutions, choosing wy = 0.0001 and we = 0.25, see
Figure 7.

Figure 7. Sphere example: influence of the tension term. The data (left), the resulting surface
for w2 = 0.0001 (center) and wa = 0.25 (right).

Here, increasing the weight wy tension leads to a “blowing up” effect of
the resulting surface. After increasing the weight ws, the algorithm produces a
surface which is flatter than the previous result. This is due to the fact that the
level surfaces of functions with G(c¢) = 0 are planes.

Finally, we have applied the method to a set of 90,695 points; 10 % of
these data are shown in Figure 8. Due to the curved shape and the noise which
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is present in the data, the estimation of normals is more difficult than in the
previous examples. The algebraic spline surface is the zero contour of a spline
function with 2,184 coefficients; the domain consists of 1,111 boxes. The data
volume is that of a tensor—product spline surface with 26 x 27 control points. The

maximum distance error equals 6.7, where the bounding box has the dimensions
250 x 40 x 120. For 80% of the data, the error is smaller than 1.0.

Figure 8. Algebraic spline surface approximating another data set (Data courtesy of Holometric
Technologies GmbH)

4.6. Adapting the objective function

After an initial solution has been found, the objective function can be subject
to an iterative adaptation, in order to obtain a better result. Then, a new solution
is found by minimizing the new objective function. This approach is similar in
spirit to the well-known method of parameter correction, see [12]. We give an
outline of two possible adaptations. Both ideas have been implemented and tested
in the planar situation, see [15] for further details.

Generally, the algebraic distances (7) are not the true distances between
the data and the approximating spline surface. One may use a weighted least—
squares sum instead, where each term has a positive weight w;. Ideally, the
weights would be chosen such that weighted least—squares sum approximates the
sum of the squared Euclidean distances. This can be achieved with the help of a
suitable ‘reweight procedure’, see [22].
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A similar procedure can be applied to the estimated normal vectors
(1i;)i=1,..,~. In order to adjust these vectors ii;, one may use the normalized
gradients of the first approximation, evaluated at the data p;.

5. Bounding the error

In order to check the quality of the surface fit, one may generate the foot-
points to all data p;, using Newton—Raphson iterations. Alternatively, with the
help of the implicit representation of the surface, an exact upper bound can be
generated. This bound is of the form

inf . — x| < K|fpi)l, 12
ool I x| < K If (o) (12

where K is a certain constant.

5.1. Footpoint distance

Consider a point z € R3. Any point x = (x1,2,23) €  which satisfies
both

f(z1,29,23) =0 and (z —x) x Vf(z1,z9,23) =0 (13)

is called a footpoint of z, see Figure 9a for a schematic illustration.

Z€ero
level surface

(a) (b)

Figure 9. Footpoint distance (a), offset surface of a cube (b).

Lemma 2. Consider a point z € (2, and let x be a footpoint of it. If the line
segment Xz is contained in the domain 2, then the footpoint distance can be
expressed as

g = VI

= V76 - vrmy) @) (14)
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where h is a certain point on the line segment connecting the points x and z.

Proof. We restrict the function f to the normal of the surface (2) at x,

Vi)
g(t) = f(x+1t -=F—) 15
O =T 9 o) 19
Due to the footpoint property, it satisfies one of the equations
g(lx—zl) = f(z) or g(—lx—zl) = f(2), (16)

depending on the orientation of the gradients. In addition, g(0) = 0 holds. With
the help of the mean value theorem, one gets in the first case

f(z) =0 Vf(x)

!
=g (A)=Vf(h) =~ (17)
Ix — =]| VS ()l
for some A € [0, ||x — z||], where
Vi)
h=x+ X\ =F— (18)
IVf ()l

By solving this equation for the footpoint distance, we obtain the desired result.
The second case follows similarly. d

5.2. Two auziliary constants

We generate two bounds C' and Dy, from the coefficients c; j 5, of the spline
function. C' is an upper bound C on the length of the gradients,

IVf(x)]| <C for xef. (19)

Dy, is a lower bound on the inner product of the gradients of any two neighbouring
points whose distance does not exceed a certain constant h,

|IVf(x)-Vf(y)| > Dp holds for all x,y € Q with ||x —y]| < h. (20)

In order to generate these constants we subdivide the spline function f into
polynomial segments with the subdomains Q).

fx)=fOx) for xeQ®, 1=1,... L (21)

The subdomains Q%) of the polynomial pieces are either the cells of the original
spline function, or they are obtained by splitting them further into even smaller
boxes. The additional splitting can be used in order to obtain tighter bounds C
and Dy,.
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With the help of knot insertion we generate for each subdomain a tensor—
product Bézier representation

d
fO@y,2) = 3 Blz) Bly) Biz) b}, (z,y,2) eV,  (22)
1,5,k=0

@

with certain coefficients b, ke In addition, we generate a tensor—product Bézier

representation of the associated gradients,

d
ViO@y,0)= Y B Bjw) Bi(z) ef), xeQ® (23
3,5,k =0

cgg, i are obtained from the formulas for differentiation
and degree elevation of tensor—product polynomials in Bernstein—Bézier form.
Note that the components of the gradient have different degrees. Thus, degree
elevation is needed in order to obtain the representation of the form (23).

Inequality (20) deals with gradients at two points with a certain maximum
distance h. For each subdomain Q) we denote with £§f)
subdomains that are within distance h of it,

Here, the control points

the indices of all

iell) «— 3xeca®3yecnl®: |x—y| <h (24)
(1

Geometrically, the set £,” contains the indices of all subdomains which have
points within the offset surface (which consists of rectangular faces, segments of
cylinders, and octants of spheres) at distance h of the boundary of Q0. For

instance, if Q) is a cube, the resulting offset surface is shown in Figure 9b.

Lemma 3. The inequalities (19) and (20) are valid with the following constants:
_ 0 _ : () . (2)
C=  max lle;ikll and Dp= min Gk Gk (25)
il lh=1,.,L; lbeL,?
2y B=Tees 11,12,51,52,k1,k2=0,...,d

The proof results from the convex hull property of polynomials in Bernstein—
Bézier form.

5.3. Bounding the footpoint distance

As a corollary, we bound the footpoint distance of a point without computing
the associated footpoint.
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Corollary 4. Consider again the situation of Lemma 2, and let (19) and (20)
be satisfied. Choose the parameter h such that h > C/Dy, f(z). The distance of
the point z from its footpoint x is bounded by

C
[x —z[| < Dy |/ (=)]. (26)

The bound has the form (12) with the global constant K = C/Dj, which
does not depend on the point p;. Clearly, this result can be used only if the
parameter h is not too small, as otherwise K will be too big. On the other hand,
the smaller the parameter h, the bigger the lower bound Dj. This parameter
acts as an initial guess of the maximum error.

If the point z approaches its footpoint x, the bound (26) converges to zero,
as z — x implies f(z) — 0.

An analogous bound can be formulated for algebraic spline curves, see [14].
The curve version of the bound improves the erroneous inequality (6.2) of [21].
Following that inequality, the distance can be bounded by C f(z). This formula,
however, is valid only if additional assumptions about the domain (2 are satisfied:
the domain © has to contain both the point z and the point x* on the curve (or
surface) which is obtained by following the path of steepest descent, starting at z,
see Figure 9a. Obviously, the latter point is not guaranteed to be the footpoint z.

In many cases, the error distribution is non—uniform, leading to isolated
regions with larger errors. The bound obtained from the corollary can be used in
order to guarantee an upper bound on the approximation error for the majority
of the points, in regions with a relatively small error. Here, it can be used in order
to avoid the footpoint computation via Newton-Raphson, which otherwise would
be necessary. In the regions with a relatively large error, it will still be more
appropriate to use footpoint computations, as this gives more accurate results.

Concluding remarks

We have described a novel technique for fitting implicitly defined algebraic
spline surfaces to scattered data in 3D. By simultaneously approximating points
and associated normal vectors, which are estimated from the data, one obtains a
method which is both computationally simple, as the result is obtained by solving
a sparse system of linear equations, and geometrically invariant, as no artificial
normalization of the spline coefficients is needed. Weighted least—squares and an
iterative adjustment of the normal vectors can be used in order to improve the
initial result.
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In principle, the method can be applied to data taken from arbitrary ori-
entable two—dimensional manifolds in 3-space. Unlike the case of parametric
surfaces, there is no limitation of the genus of the surface. However, as a cru-
cial step in the surface fitting process, the estimation of surface normals has to
be possible. Thus, there should be no creases in the data, the distribution of
the data should be not too irregular, and the level of numerical noise should be
relatively small.

Future research will address the issue of adding degrees of freedom locally,
where they are needed. As another future project, we intend to integrate fair—
and shape—preserving techniques into the framework of implicitly defined spline
surfaces.

As part of ongoing research, we plan to combine the techniques described
in this paper with the existing methods of parametric surface fitting, as follows.
As a first step, we plan to fit an algebraic spline surface (with relatively few
degrees of freedom) to the data. This surface will be used as an initial guess
of a parametric spline surface consisting of parametric surface patches, pieced
together with (approximate) geometrical continuity. It will be used to choose
the non-linear parameters involved in the geometric continuity conditions, the
segment boundaries, and in order to assign parameter values to the data. (This
is related to the problem of parameterizing the algebraic spline surfaces, in order
to generate representations which are compatible with existing CAD standards
cf. [3]). Then, as a second step, the quality of the fit can be improved by locally
adding further degrees of freedom to the parametric surface patches. The details
and the implementation of this method are currently under way.
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