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Abstract

We report on approximate techniques for conversion betweenthe
implicit and the parametric representation of curves and surfaces,
i.e., implicitization and parameterization. It is shown that these
techniques are able to handle general free–form surfaces, and they
can therefore be used to exploit the duality of implicit and para-
metric representations. In addition, we discuss several applications
of these techniques, such as detection of self–intersections, ray–
tracing, footpoint computation and parameterization of scattered
data for parametric curve or surface fitting.

CR Categories: G.1.2 [Mathematics of Computing]: Numeri-
cal Analysis—Approximation; I.3.5 [Computing Methodologies]:
Computer Graphics—Computational Geometry and Object Model-
ing; J.6 [Computer Applications]: Computer–Aided Engineering

Keywords: approximation, implicitization, parameterization,
distance bounds, intersections and self–intersections, ray–tracing,
footpoint computation, parameterizing scattered data.

1 Introduction

Curves and surfaces in Computer Graphics and Computer Aided
Design can be modelled in several ways. They can be defined by
embedding an intervalI ⊂ R or a two–dimensional parameter do-
main Ω ⊂ R

2 (such as a rectangle) into space, by using a para-
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metric representation. This approach has almost exclusively been
used in the classical differential geometry of curves and surfaces.
In Computer–Aided Design, the mapping is often described byra-
tional spline functions. This leads to NURBS curves and surface,
which have become a universally accepted standard.

Another technique, which is dual to the first one, originatedin alge-
braic geometry. It is based on the representation of the geometry by
iso–curves or iso–surfaces of functions (scalar fields) defined on the
underlying space. Recently, this representation has attracted much
interest in connection with so–called level–set techniques [Osher
and Fedkiw 2003], where the function is given only at a 3D grid.

Both representations are ambiguous. Parametric representations
can be modified via parameter transformations, and the scalar fields
defining implicitly defined curves or surfaces can be multiplied by
arbitrary (not necessarily constant) factors, provided that this does
not introduce new branches in the region of interest.

Both representations ar particularly well suited for certain applica-
tions. For example, parametric representations are very useful, for
(e.g.) variational design, where aesthetic criteria are modelled via
fairness functionals. On the other hand, implicit representations are
especially useful for reconstructing curves or surfaces from unstruc-
tured point clouds, since fitting procedures for these representations
do not need to assume the existence of an initial parameterization
of the data (i.e., a mapping which identifies the given data with
points in the parameter domain). In many applications, the simulta-
neous availability of both representations would be desirable, e.g.,
for computing surface–surface intersections.

In order to fully exploit the potential of both representations, ef-
ficient and robust algorithms for conversion between them are
needed. The existing exact techniques (which are restricted to the
cases of rational curves/surfaces and to scalar fields whichare de-
fined by polynomials) from algebraic geometry and symbolic com-
putation cannot play this role; they face many difficulties,e.g.,
when dealing with coefficients given by floating point numbers. In
addition, they may produce unexpected results, see Fig. 4 for an ex-
ample. In applications, the use of approximate (numerical)methods
will therefore often be preferred.



Figure 4: The exact implicitization of a planar cubic may
introduce another branch (green) and a singular point (red)
in the region of interest.

This paper gives a survey of various approximate techniquesfor the
two conversion operations: implicitization and parameterization. In
addition, we discuss the generation of a posteriori error bounds in
the case of spline representations and applications of the results to
intersections, ray tracing, footpoint computation, and tothe param-
eterization of scattered data.

2 Approximate implicitization of surfaces

Given a parametric surfacep(u,v) with parameter domainΩ ⊂ R
2,

we compute an implicitly defined surface

0 = f (x) =
n

∑
i=0

φi(x)ci (1)

with basis functionsφi (e.g., Bernstein polynomials, tensor–product
B-splines, radial basis functions, or others) and unknown coeffi-
cientsci ∈ R, such that

f (p(u,v)) ≈ 0 for all (u,v) ∈ Ω. (2)

Sometimes, the surface is only known at sampled pointsp j =
p(u j ,v j ), j = 0, . . . ,N. In this case, Eq. (2) is to be satisfied only at
these points.

Note that Eq. (2) does not suffice to obtain a meaningful result. On
the one hand, the trivial solution (f = 0) has to be excluded. In
addition, one has to ensure that regular points of the parametric sur-
face correspond to regular points of the implicitly defined surface.
More precisely, the implicitization procedure should not generate
additional branches of the surface which pass through the region of
interest.

2.1 Related work

In the case of discrete data, the methods of [Pratt 1987] and [Taubin
1991] are based on certain normalizations in the coefficientspace,
in order to exclude the trivial solution. Pratt’s simple linear nor-
malization, which is not geometrically invariant, leads toa linear
system of equations for the unknown coefficientsci . Taubin’s tech-
nique is based on a quadratic normalization, which producesa gen-
eralized eigenvalue problem. Both methods may have problems
with unwanted branches. [Carr et al. 2001] use additional values of
the function which are specified at so–called off–surface points.

In the case of given spline surfaces, the technique of [Dokken 2001]
uses the factorization

f (p(u,v)) = b(u,v)⊤Ac (3)

whereb is a vector of basis functions spanning a linear space that
contains the functionsφi(p(u,v)), and c = (ci)

n
i=0. By applying

singular value decomposition to the matrixA, a right eigenvector
corresponding to a small singular value is used to define an approx-
imate implicitization. One may try to address the problem ofaddi-
tional branches by combining two or more eigenvectors (associated
with small singular values).

Except for the technique of [Carr et al. 2001], all methods described
in this section are able to reproduce the exact implicitization of a
rational surface by a polynomialf . However, in practice one may
prefer to work with lower degrees, since the number of coefficients
may be very high otherwise.

2.2 Simultaneous fitting of points and normals

This method has been originally formulated in [Jüttler andFelis
2002]. Meanwhile, it has been implemented as prototype software
within the frame of the European project GAIA II [Dokken et al.
2002–2005]. More details, including benchmarking and qualitative
comparisons, can be found in [Wurm et al. 2005b; Shalaby et al.
submitted].

In the case of discrete data, we assume that the given pointspi are
equipped with associated unit normal vectorsni . If these normals
are unknown, than they can be estimated from the data via fitting
locally defined planes of regression. For some of the points,this
may give an ambiguous result, and therefore no normal vectorcan
be estimated. These points are candidates for self–intersections of
the surface. In the case of a given parametric surface, the normals
can be sampled from the existing surface. In both cases, a local
and global consistency of the sampled normals has to be guaran-
teed. While local consistency can be achieved by a simple region-
growing process, global consistency is more difficult, in particular
in the presence of singularities, see [Jüttler and Wurm 2003] for
more details.

The coefficientsci of the unknown functionf are computed by min-
imizing a positive definite quadratic objective function ofthe form

N

∑
i=0

f (pi)
2 +w||∇ f (pi)−ni ||

2 + “tension”, (4)

wherew is a user–specified positive weight.

In the case of tensor–product B-spline functionsφi , this function
leads to a sparse linear system of equations. The additionaltension
terms are needed in order to regularize the system. The domain
of interest is divided into cubes of the same size. This is done by
specifying a cell-size. In order to guarantee an integer number of
cells, the bounding box of the input surface is enlarged a bit. The
domain of the spline functions consists of all cubes containing data,
and its neighbours.

Fig. 5 shows an example. A surface with two self–intersecting
curves has been implicitized by tensor–product polynomials and
tensor–product spline functions. By using spline functions, one
may avoid unwanted branches completely, see Figure 1. On the
other hand, the local geometry of the singularities is reproduced
better by the tensor–product polynomials, due to the higherpolyno-
mial degree.

The approximation result can be improved via ‘normal vectorad-
justment’: the normal vectors sampled from the first approximation
are used to compute new one, and this can be iterated. Note that this
procedure, which is similar to “parameter correction” for paramet-
ric fitting [Hoschek and Lasser 1993], leads to a sequence of lin-



Figure 5: Approximate implicitization by tensor–product
polynomials (this figure) and by tensor–product spline
functions (see Fig. 1). Data courtesy of think3.

ear systems with identical matrices, but varying right–hand sides,
which can be solved efficiently by factorizing the matrix.

3 Approximate parameterization

In the case of algebraic curves and surfaces, various symbolic–
computation based techniques exist. However, these techniques
have difficulties if the implicitly defined curve or surface is only
given by floating point coefficients, i.e., with limited accuracy.
Also, they cannot deal with general algebraic curves and surfaces,
since an exact rational parameterization does not exist in the generic
case. Approximate techniques, which generate a parameterization
within a certain region of interest, can be used to avoid these prob-
lems. In this section we discuss approximate techniques forparam-
eterizing planar curves, space curves (given as the intersection of
two surfaces), and surfaces.

3.1 Planar curves

We consider a rational curve of the form

p(t) = (
p1(t)
p0(t)

, . . . ,

pd(t)
p0(t)

)⊤, t ∈ I . (5)

It can be described by homogeneous coordinates

p j (t) =
m

∑
i=0

βi(t)b j,i , j = 0, . . . ,d, (6)

with basis functionsβi(t) (e.g., B-splines) and coefficientsb j,i . A
method for parameterizing planar curves (i.e.,d = 2) has been de-
scribed by [Jüttler and Chalmovianský 2004]. It is based on mini-
mizing the nonlinear objective function

∫
I

f (p(t))2

||∇ f (p(t))||2
dt + regularizing terms, (7)

subject to suitable boundary conditions, using a damped Newton
method.

The objective function (7) gives the total squared Sampson [1982]
distance of the curve segment, which approximates the Euclidean

distance very well, provided that the implicitly defined curve and
its approximation are sufficiently close to each other.

The regularizing terms were chosen so as to obtain an approxi-
mately uniform distribution of the parametric speed and to keep the
denominatorp0(t) close to one, by integrating a penalty function

(p0(t)−1)2k (8)

over the parameter domainI , with some constantk∈ Z+.

As for all non–linear optimization techniques, the choice of the ini-
tial solution is probably the most important issue. Here, westarted
with a small segment (almost identical to a tangent) and force it to
grow along the curve. According to our numerical experience, this
approach is able to reproduce exact rational parameterizations, if
these are available.

3.2 Intersection curves

Currently, the generalization of this technique to intersection curves
of two implicitly defined surfacesf (x) = 0,g(x) = 0 is under inves-
tigation [Chalmovianský and Jüttler 200x]. In this case,the squared
Euclidean distancel2 of a pointp to the intersection curve can be
approximated by

F(p)2

||∇F(p)||2
+

G(p)2

||∇G(p)||2
(9)

where the auxiliary functionsF andG are defined as

F = ||∇ f ||g+ ||∇g|| f and G = ||∇ f ||g−||∇g|| f . (10)

This can be seen as a preconditioning step, similar to the precondi-
tioning of large linear systems in numerical analysis, which is used
to speed up the convergence of iterative solvers.

This observation is illustrated by Fig. 2, which shows two implicitly
defined planar curvesf (x) = 0, g(x) = 0 (in blue), the iso–curves
(level sets) of

f 2

||∇ f ||2
+

g2

||∇g||2
(11)

(red), the preconditioned curvesF(x) = 0, G(x) = 0 (black), and
the iso–curves of the right–hand side in Eq. 9 (green ovals).The
two preconditioned curves intersect orthogonally and the distance
ovals are approximately circles.

A surface example is shown in Figure 6. In this case, the given
surface are two quadrics intersecting in a conic section in the region
of interest (there should be another conic section elsewhere).

Note that this techniques fails if the two original curves resp. sur-
faces intersect each other tangentially!

This distance measure has been used to generate the parameteriza-
tion of the intersection curve of a sphere and a cylinder, seeFigure
6. More details of the method will be presented in [Chalmovianský
and Jüttler 200x].

3.3 Surfaces

Meanwhile, [Wurm et al. 2005a] have generalized this approach to
the surface case. In addition to terms controlling the distance and
the denominator, the nonlinear optimization also takes theinner ge-
ometry into account. More precisely, we use additional terms of the
objective function which measure the deviation from an isometric



Figure 6: Preconditioning the intersection of two quadric
surfaces. The two surfaces and an iso–surface of the func-
tions (9) resp. (11) before (top) and after (bottom) precondi-
tioning are shown. After preconditioning, the latter surface
becomes more similar to a tubular surface.

parameterization. As an example, Fig. 3 shows a surface patch on
an algebraic surface with a double line (‘Whitney’s umbrella’). The
quality of the parameterization of the surface patch is visualized by
the checkerboard pattern on the surface.

4 Distance bounds

In order to certify the accuracy of the results of approximate im-
plicitization and/or approximate parameterization, distance bounds
between implicitly defined and parametric curves and surfaces are
needed. Under certain technical assumptions (see [Aigner et al.
2004]), the one–sided Hausdorff distance between a planar para-
metric curve and an implicitly defined parametric curve can be
bounded by

max
t∈I

| f (p(t))|

min
x∈Ω

||∇ f (x)||
, (12)

whereΩ ⊂ R
2 is the region of interest. This fact can easily be

generalized to the surface case.

In the case of polynomials, upper resp. lower bound on numerator
and denominator in Eq. 12 are available by using the Bernstein–
Bézier representation. More precisely,

| f (p(t))| ≤ max
j

|c j | (13)

Figure 7: Parameterization of the intersection curve be-
tween two quadric surfaces.

where
f (p(t)) = ∑

j
β j (t)c j . (14)

The norm of the gradient||∇ f (x)|| can be bounded from below by
the minimum distance of the ‘gradient patch’∇ f : Ω → R

3 to the
origin, which can again be bounded from below by using the convex
hull of its control points with respect to a suitable Bernstein–Bézier
representation.

However, in the case of piecewise polynomialsf (e.g., bivariate
tensor–product spline functions) andp, a B-spline representation
of the form (14) is hard to find, since one would need to compute
the parameter values of the intersections betweenp(t) and the knot
lines of f , see Fig. 8. This is even more true in the case of surfaces,
where such a B-spline representation does not exist in general. In
this situation, one can bound the numerator by using

| f (p(t))| ≤ max
i, j

|ci, j | (15)

where
f (p̂(u,v)) = ∑

i, j
βi(u)β j (v)ci, j , (16)

wherep̂(u,v) is a bilinear parameterization of a bounding box of the
curvep(t), and similarly for surfaces. Clearly,f ◦ p̂ has a tensor–
product spline representation, provided thatf is a tensor–product
spline function, too.

Figure 8: Generating an upper bound on| f (p(t))| in the
case of piecewise polynomials by using the bounding box
(dotted). The accuracy of the bound can be improved by
splitting the curvep(t) into smaller segments. The dashed
lines are the knot lines off .



Figure 9: Ray tracing using approximate implicitization.

5 Applications

This section discusses several applications of approximate alge-
braic methods, such as the detection of singularities and self–
intersections, ray–tracing, footpoint computation, and parameteri-
zation of scattered data.

5.1 Detecting self–intersections

Various geometric operations in Computer Aided Design, such as
offsetting and blending, may produce curves and surfaces with sin-
gularities. In order to maintain the correctness of the model, the
resulting object has to be trimmed at these singularities.

Such singularities (in particular self–intersections) ofcurvesp(t)
and surfacesp(u,v) can easily be detected, provided that both rep-
resentations are available. They correspond to simultaneous zeros
of the components of

∇ f (x)|x=p(.) (17)

Alternatively, as proposed by [Thomassen 2005], one may consider
the univariate / bivariate functions

p′(t)⊥ · ∇ f (x)|x=p(t) resp. (18)

pu(u,v)×pv(u,v) · ∇ f (x)|x=p(u,v) (19)

in the case of curves and surfaces, respectively. In the caseof non–
tangential double points or curves, sign changes of these two func-
tions can be used to detect the singularities of the curve or surface.

5.2 Ray–Tracing

Approximate implicitization may be used to speed up algorithms
for ray–tracing, since intersections with lines are much easier to
compute for implicitly defined surfaces. We demonstrate this fact
by an example: It took 2 seconds to generate Fig. 9, which was gen-
erated by PoVRay, using an approximate implicit representation.
When using the original parametric representation for generating a
similar image, the computation time was about 20 seconds.

5.3 Footpoint computation

Algorithms for computing the footpoint (nearest point) to agiven
point on a curve or surface is needed for various applications, e.g.,

collision detection or parameterization of scattered data. Robust
techniques, which avoid the dependency on chosen initial values,
can again be formulated, provided that an implicit representation is
available [Aigner and Jüttler 2005].

5.4 Parameterization of scattered data

Fitting a parametric curve or surface to scattered data is a non–
linear problem, which can be solved by using suitable optimiza-
tion techniques, such as parameter correction [Hoschek andLasser
1993] or Newton–type methods [Rogers and Fog 1989; Speer et al.
1998]. The result depends heavily on the choice of an initialso-
lution. More precisely, the given datapi have to be equipped with
suitable parameter valuesti resp.(ui ,vi), e.g., by projecting them
onto a line or plane, or another auxiliary curve or surface.

A more general approach for generating such an auxiliary surface,
which seems to be promising, is as follows:

1. Generate a low–degree algebraic (spline) curve or surface,
which is a rough parameterization of the given points,

2. parameterize it using the techniques of approximate implicit-
ization, and

3. find the parameter values associated with the data by comput-
ing the footpoints of the given points on this parametric curve
or surface.

An example is shown in Fig. 10.

As an advantage, this approach should be able to handle data which
cannot be projected onto a line or plane. In addition, the weights
of the rational parameterization may also be used to initialize the
weights of the approximating parametric rational curve or surface.
This may be a subject of further research.

Figure 10: Generating an initial parameterization via
implicit fitting and parameterization (data courtesy of
Holometric Technologies, Aalen). Top: the data, bot-
tom: implicit approximation and its parameterization (with
checkerboard pattern).



6 Conclusion

This paper presented several numerical techniques for approxi-
mately converting implicitly defined curves or surfaces into para-
metric ones, and vice versa. In the case of approximate implicitiza-
tion, this was implemented as a prototype software which is one of
the deliverables of the GAIA II project [Dokken et al. 2002–2005].

As demonstrated by the applications, many problems in geometric
computing can be solved more easily by exploiting the duality of
both representations. The investigation of suitable algorithms and
their comparison with existing ones, in particular from thefield of
computational geometry, may be a subject for further research.
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