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Figure 1: Approximate implicitization

Abstract

We report on approximate techniques for conversion betvileen
implicit and the parametric representation of curves antases,

i.e., implicitization and parameterization. It is showratththese
techniques are able to handle general free—form surfandshay

can therefore be used to exploit the duality of implicit aradge

metric representations. In addition, we discuss seveg@icgtions

of these techniques, such as detection of self-intersegtiay—

tracing, footpoint computation and parameterization afttsred

data for parametric curve or surface fitting.

CR Categories: G.1.2 [Mathematics of Computing]: Numeri-
cal Analysis—Approximation; 1.3.5 [Computing Methodoleg]:
Computer Graphics—Computational Geometry and Object Mode
ing; J.6 [Computer Applications]: Computer—Aided Engirieg

Keywords: approximation, implicitization, parameterization,

distance bounds, intersections and self-intersecti@ys;tracing,
footpoint computation, parameterizing scattered data.

1 Introduction

Curves and surfaces in Computer Graphics and Computer Aided
Design can be modelled in several ways. They can be defined by

embedding an intervdl C R or a two—dimensional parameter do-

main Q c R? (such as a rectangle) into space, by using a para-
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Figure 2: Preconditioning intersections Figure 3: Approximate parameterization

metric representation. This approach has almost exclysbeen

used in the classical differential geometry of curves anthsas.

In Computer—Aided Design, the mapping is often describedaby
tional spline functions. This leads to NURBS curves andasgf

which have become a universally accepted standard.

Another technique, which is dual to the first one, originatealge-
braic geometry. It is based on the representation of the gegray
iso—curves or iso—surfaces of functions (scalar fieldshddfon the
underlying space. Recently, this representation hascggttanuch
interest in connection with so—called level-set techrégi@sher
and Fedkiw 2003], where the function is given only at a 3D grid

Both representations are ambiguous. Parametric repedgsTs
can be modified via parameter transformations, and therdezltis

defining implicitly defined curves or surfaces can be mukibby

arbitrary (not necessarily constant) factors, providet this does
not introduce new branches in the region of interest.

Both representations ar particularly well suited for cer&pplica-
tions. For example, parametric representations are vefyligor
(e.g.) variational design, where aesthetic criteria areetied via
fairness functionals. On the other hand, implicit représions are
especially useful for reconstructing curves or surfacesmfunstruc-
tured point clouds, since fitting procedures for these epr&tions
do not need to assume the existence of an initial paramatieriz
of the data (i.e., a mapping which identifies the given datthn wi
points in the parameter domain). In many applications, itnalsa-
neous availability of both representations would be dbgee.g.,
for computing surface—surface intersections.

In order to fully exploit the potential of both representas, ef-
ficient and robust algorithms for conversion between them
needed. The existing exact techniques (which are restrict¢he
cases of rational curves/surfaces and to scalar fields vehietle-
fined by polynomials) from algebraic geometry and symbadime
putation cannot play this role; they face many difficultiesg.,
when dealing with coefficients given by floating point nuntbdn
addition, they may produce unexpected results, see Fig.ahfex-
ample. In applications, the use of approximate (numericathods
will therefore often be preferred.
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Figure 4: The exact implicitization of a planar cubic may
introduce another branch (green) and a singular point (red)
in the region of interest.

This paper gives a survey of various approximate technitprabe
two conversion operations: implicitization and paramietgion. In
addition, we discuss the generation of a posteriori erramntds in
the case of spline representations and applications ofthéts to
intersections, ray tracing, footpoint computation, antheparam-
eterization of scattered data.

2 Approximate implicitization of surfaces

Given a parametric surfaggu, v) with parameter domaif c R?,
we compute an implicitly defined surface

n
0="f(x)= Z)(H(X)Ci @

=l
with basis functiong (e.qg., Bernstein polynomials, tensor—product
B-splines, radial basis functions, or others) and unknoweffc
cientsc; € R, such that

f(p(u,v)) =~ 0 for all (u,v) € Q. 2

Sometimes, the surface is only known at sampled paginpts-
p(uj,vj), j =0,...,N. Inthis case, Eq. (2) is to be satisfied only at
these points.

Note that Eq. (2) does not suffice to obtain a meaningful te€n
the one hand, the trivial solutiorf (= 0) has to be excluded. In
addition, one has to ensure that regular points of the paranser-
face correspond to regular points of the implicitly definedace.
More precisely, the implicitization procedure should nehgrate
additional branches of the surface which pass through tienef
interest.

2.1 Related work

In the case of discrete data, the methods of [Pratt 1987] Eaubjn
1991] are based on certain normalizations in the coefficpate,

in order to exclude the trivial solution. Pratt’s simpledar nor-
malization, which is not geometrically invariant, leadsatdinear
system of equations for the unknown coefficiegitsTaubin’s tech-
nigue is based on a quadratic normalization, which prodageEn-
eralized eigenvalue problem. Both methods may have prablem
with unwanted branches. [Carr et al. 2001] use additionalegaof

the function which are specified at so—called off-surfadatpo

In the case of given spline surfaces, the technique of [DoRKD1]
uses the factorization

f(p(u,v)) =b(u,v)"Ac 3

whereb is a vector of basis functions spanning a linear space that
contains the functiongi(p(u,v)), andc = (c){',. By applying
singular value decomposition to the matAx a right eigenvector
corresponding to a small singular value is used to define proap
imate implicitization. One may try to address the problenaaddi-
tional branches by combining two or more eigenvectors (@atexd

with small singular values).

Except for the technique of [Carr et al. 2001], all methodscdéed
in this section are able to reproduce the exact implicitirabf a
rational surface by a polynomidl. However, in practice one may
prefer to work with lower degrees, since the number of cdefiits
may be very high otherwise.

2.2 Simultaneous fitting of points and normals

This method has been originally formulated in [Juttler aredis
2002]. Meanwhile, it has been implemented as prototypeveoé
within the frame of the European project GAIA Il [Dokken et al
2002-2005]. More details, including benchmarking and itatale
comparisons, can be found in [Wurm et al. 2005b; Shalaby.et al
submitted].

In the case of discrete data, we assume that the given pniate
equipped with associated unit normal vectoys If these normals
are unknown, than they can be estimated from the data viadfitti
locally defined planes of regression. For some of the pothts,
may give an ambiguous result, and therefore no normal veator
be estimated. These points are candidates for self—ictase of
the surface. In the case of a given parametric surface, thaai®
can be sampled from the existing surface. In both cases,ah loc
and global consistency of the sampled normals has to be muara
teed. While local consistency can be achieved by a simplemeg
growing process, global consistency is more difficult, inticalar

in the presence of singularities, see [Juttler and Wurnm3R&ar
more details.

The coefficients; of the unknown functiorf are computed by min-
imizing a positive definite quadratic objective functiontioé form

if(Pi)2+W|Df(pi)—ni|2+“ten5i0n”7 (4)

wherew is a user—specified positive weight.

In the case of tensor—product B-spline functigmsthis function
leads to a sparse linear system of equations. The additiensibn
terms are needed in order to regularize the system. The domai
of interest is divided into cubes of the same size. This isedon
specifying a cell-size. In order to guarantee an integerbermof
cells, the bounding box of the input surface is enlarged .aTie
domain of the spline functions consists of all cubes contgidata,
and its neighbours.

Fig. 5 shows an example. A surface with two self-intersegctin
curves has been implicitized by tensor—product polyncsnéaid
tensor—product spline functions. By using spline funatioone
may avoid unwanted branches completely, see Figure 1. On the
other hand, the local geometry of the singularities is répced
better by the tensor—product polynomials, due to the highmo-

mial degree.

The approximation result can be improved via ‘normal veeit
justment’: the normal vectors sampled from the first appration
are used to compute new one, and this can be iterated. Notaitha
procedure, which is similar to “parameter correction” fargmet-
ric fitting [Hoschek and Lasser 1993], leads to a sequenc@of |



Figure 5: Approximate implicitization by tensor—product
polynomials (this figure) and by tensor—product spline
functions (see Fig. 1). Data courtesy of think3.

ear systems with identical matrices, but varying right-€haiues,
which can be solved efficiently by factorizing the matrix.

3 Approximate parameterization

In the case of algebraic curves and surfaces, various syerbol
computation based techniques exist. However, these wobsi
have difficulties if the implicitly defined curve or surface only
given by floating point coefficients, i.e., with limited aceay.
Also, they cannot deal with general algebraic curves anfhces,
since an exact rational parameterization does not exiseigéneric
case. Approximate techniques, which generate a parawegieri
within a certain region of interest, can be used to avoidaipmsb-
lems. In this section we discuss approximate techniquesai@am-
eterizing planar curves, space curves (given as the imtéoaeof
two surfaces), and surfaces.

3.1 Planar curves

We consider a rational curve of the form

pity= (PO Pty oy 5)

Po(t)” " po(t)

It can be described by homogeneous coordinates
m
pj(t) = Bi(t)bji, [i=0,....d, (6)
2

with basis functiongsi(t) (e.g., B-splines) and coefficierits;. A
method for parameterizing planar curves (ice= 2) has been de-
scribed by [Juttler and Chalmoviansky 2004]. It is basedroni-
mizing the nonlinear objective function

f(p(t))2 .
/%d&kregulamzmg terms @)

subject to suitable boundary conditions, using a dampedtdiew
method.

The objective function (7) gives the total squared Samp$687]
distance of the curve segment, which approximates the daanti

distance very well, provided that the implicitly defined weirand
its approximation are sufficiently close to each other.

The regularizing terms were chosen so as to obtain an approxi
mately uniform distribution of the parametric speed andderkthe
denominatomyp(t) close to one, by integrating a penalty function

(po(t) 1) ®)
over the parameter domalipwith some constark € Z..

As for all non—linear optimization techniques, the choit¢he ini-
tial solution is probably the most important issue. Here stegted
with a small segment (almost identical to a tangent) andefdrto
grow along the curve. According to our numerical experietivis
approach is able to reproduce exact rational parametenzatif
these are available.

3.2 Intersection curves

Currently, the generalization of this technique to inteties curves
of two implicitly defined surface$§(x) = 0, g(x) = 0 is under inves-
tigation [Chalmoviansky and Juttler 200x]. In this catbe, squared
Euclidean distanc of a pointp to the intersection curve can be
approximated by

F(p)? G(p)
+ )
IOF(P)I[Z ~ [[0G(p)|[?
where the auxiliary functions andG are defined as
F=|0fllg+/0g||f and G= [|Of{|g—||Cg]|f. (10)

This can be seen as a preconditioning step, similar to treopos-
tioning of large linear systems in numerical analysis, Wwhicused
to speed up the convergence of iterative solvers.

This observation is illustrated by Fig. 2, which shows tweiititly
defined planar curve§(x) = 0, g(x) = 0 (in blue), the iso—curves
(level sets) of
f2 g2
o2 T gz
Of([= - [IOg]|

(red), the preconditioned curvégx) = 0, G(x) = 0 (black), and
the iso—curves of the right—hand side in Eq. 9 (green ovalge
two preconditioned curves intersect orthogonally and tiseadce
ovals are approximately circles.

()

A surface example is shown in Figure 6. In this case, the given
surface are two quadrics intersecting in a conic sectiongmégion
of interest (there should be another conic section elseyher

Note that this techniques fails if the two original curvespgesur-
faces intersect each other tangentially!

This distance measure has been used to generate the paiaanete
tion of the intersection curve of a sphere and a cylinderFsgere

6. More details of the method will be presented in [Chalmosig/
and Juttler 200x].

3.3 Surfaces

Meanwhile, [Wurm et al. 2005a] have generalized this apgirda
the surface case. In addition to terms controlling the distaand
the denominator, the nonlinear optimization also takedrther ge-
ometry into account. More precisely, we use additional teofrthe
objective function which measure the deviation from an istio



Figure 6: Preconditioning the intersection of two quadric
surfaces. The two surfaces and an iso—surface of the func-
tions (9) resp. (11) before (top) and after (bottom) precond
tioning are shown. After preconditioning, the latter saefa
becomes more similar to a tubular surface.

parameterization. As an example, Fig. 3 shows a surfacé jpatc
an algebraic surface with a double line (‘Whitney's umta@li The
quality of the parameterization of the surface patch isaligad by
the checkerboard pattern on the surface.

4 Distance bounds

In order to certify the accuracy of the results of approxienia-
plicitization and/or approximate parameterization, alisie bounds
between implicitly defined and parametric curves and sedase
needed. Under certain technical assumptions (see [Aignat. e
2004]), the one—sided Hausdorff distance between a plaaa- p
metric curve and an implicitly defined parametric curve can b
bounded by
max|f (p(t))|
el (12)
min||Of(x)||’
xeQ
whereQ ¢ R? is the region of interest. This fact can easily be
generalized to the surface case.

In the case of polynomials, upper resp. lower bound on nuimera
and denominator in Eq. 12 are available by using the Bemstei
Bézier representation. More precisely,

[T(p(1)] < maxci| (13)

Figure 7. Parameterization of the intersection curve be-
tween two quadric surfaces.

where

f(p(t) = Bj(t)cj. (14)
]

The norm of the gradierjtdf (x)|| can be bounded from below by
the minimum distance of the ‘gradient patdhf : Q — R3 to the
origin, which can again be bounded from below by using theern
hull of its control points with respect to a suitable Berinst®&ézier
representation.

However, in the case of piecewise polynomidige.g., bivariate
tensor—product spline functions) apg a B-spline representation

of the form (14) is hard to find, since one would need to compute
the parameter values of the intersections betweénand the knot
lines of f, see Fig. 8. This is even more true in the case of surfaces,
where such a B-spline representation does not exist in genler

this situation, one can bound the numerator by using

[F(P()] < maxic | (15)

where
f(puv)) =3 Bi(WB;(V)Gi;,

1]

(16)

wheref(u,v) is a bilinear parameterization of a bounding box of the
curvep(t), and similarly for surfaces. Clearly,op has a tensor—
product spline representation, provided tligs a tensor—product
spline function, too.

Figure 8: Generating an upper bound [drip(t))| in the
case of piecewise polynomials by using the bounding box
(dotted). The accuracy of the bound can be improved by
splitting the curvep(t) into smaller segments. The dashed
lines are the knot lines df.



Figure 9: Ray tracing using approximate implicitization.

5 Applications

This section discusses several applications of approgiralge-
braic methods, such as the detection of singularities aiffd se
intersections, ray-tracing, footpoint computation, aadameteri-
zation of scattered data.

5.1 Detecting self-intersections

Various geometric operations in Computer Aided Designhas
offsetting and blending, may produce curves and surfactssivi-
gularities. In order to maintain the correctness of the matie
resulting object has to be trimmed at these singularities.

Such singularities (in particular self-intersections)cafvesp(t)
and surfacep(u,v) can easily be detected, provided that both rep-
resentations are available. They correspond to simultengeros

of the components of

Of(x) 7

be=p()

Alternatively, as proposed by [Thomassen 2005], one magiden
the univariate / bivariate functions

(18)
(19)

(O OF () |x—ppr)
Pu(u,v) x py(u,v) - |:lf(x)|x:p(u,v)

resp.

in the case of curves and surfaces, respectively. In theafasm—
tangential double points or curves, sign changes of thesdumc-
tions can be used to detect the singularities of the curvarface.

5.2 Ray-Tracing

Approximate implicitization may be used to speed up alhong
for ray—tracing, since intersections with lines are muckiezato
compute for implicitly defined surfaces. We demonstrate fact
by an example: It took 2 seconds to generate Fig. 9, which emas g
erated by PoVRay, using an approximate implicit represiema
When using the original parametric representation for gaimey a
similar image, the computation time was about 20 seconds.

5.3 Footpoint computation

Algorithms for computing the footpoint (nearest point) tgigen
point on a curve or surface is needed for various applicatiery.,

collision detection or parameterization of scattered .d&Rabust
techniques, which avoid the dependency on chosen initlaksa
can again be formulated, provided that an implicit represtem is
available [Aigner and Juttler 2005].

5.4 Parameterization of scattered data

Fitting a parametric curve or surface to scattered data isre-n
linear problem, which can be solved by using suitable opidmi
tion techniques, such as parameter correction [Hoschek asser
1993] or Newton—type methods [Rogers and Fog 1989; Speér et a
1998]. The result depends heavily on the choice of an insiial
lution. More precisely, the given dapa have to be equipped with
suitable parameter valugsresp.(u;, Vi), e.g., by projecting them
onto a line or plane, or another auxiliary curve or surface.

A more general approach for generating such an auxiliafiaser
which seems to be promising, is as follows:

1. Generate a low—degree algebraic (spline) curve or syrfac
which is a rough parameterization of the given points,

2. parameterize it using the techniques of approximateiditpl
ization, and

3. find the parameter values associated with the data by dempu
ing the footpoints of the given points on this parametriozeur
or surface.

An example is shown in Fig. 10.

As an advantage, this approach should be able to handle dath w
cannot be projected onto a line or plane. In addition, theghtsi
of the rational parameterization may also be used to ifdgahe
weights of the approximating parametric rational curvewface.
This may be a subject of further research.

Figure 10: Generating an initial parameterization via
implicit fitting and parameterization (data courtesy of
Holometric Technologies, Aalen). Top: the data, bot-
tom: implicit approximation and its parameterization fwit

checkerboard pattern).



6 Conclusion

This paper presented several numerical techniques forozippr
mately converting implicitly defined curves or surfaceiptira-
metric ones, and vice versa. In the case of approximate ditipé-
tion, this was implemented as a prototype software whicmeésaf
the deliverables of the GAIA Il project [Dokken et al. 200263)].

As demonstrated by the applications, many problems in gegame
computing can be solved more easily by exploiting the dyaift
both representations. The investigation of suitable #lyms and
their comparison with existing ones, in particular from fie¢d of
computational geometry, may be a subject for further rebear
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