Sectional Curvature—Preserving
Interpolation of Contour Lines

Bert Juttler

Abstract. A sequence of given contour curves is interpolated by a
surface composed of tensor—product B-spline patches. The interpola-
tion scheme preserves the signs of the sectional curvature of the contours.
Based on an appropriate linearization of the shape constraints we formu-
late this task as a quadratic programming problem which is solved with
the help of an active set strategy.

§1. Introduction

Methods for the generation of surfaces from given contour line data are re-
quired in several applications, ranging from the reconstruction of bone surfaces
from medical images to the construction of ship hulls. For an overview over
related literature the reader is referred to the survey articles by Schumaker [7]
and Unsworth [8]. It is desirable that the generated surfaces preserve (at least
approximately) the shape of the given contour data. In order to achieve this
property, Kaklis and Ginnis [6] proposed to use interpolation by polynomial
splines of non—uniform degree whereby the degrees of the spline segments act
as tension parameters. If the degree of the spline segments is chosen high
enough, then the surface preserves the shape of the contours. In the present
paper we will outline a different approach; the shape—preserving property is
guaranteed with the help of additional linear constraints to the control points.

We assume that B—spline representations of some contour curves of the
surface are already known. They can be found with the help of a method
for shape preserving least-square approximation by polynomial parametric
spline curves which has been developed in [4]. We interpolate these curves by
a surface which preserves their shape, i.e., all segments of level curves inter-
polating between two convex segments of contour lines are convex (sectional
curvature—preserving interpolation). Based on an appropriate linearization of
the shape constraints we are able to formulate this task as a quadratic pro-
gramming (QP) problem. We then construct an initial solution which is very
close to the optimum and solve the QP problem using an active set strategy.
The method is illustrated by an example.
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§2. Sectional Curvature—Preserving Interpolation

The C'+1 given contour curves, represented by open B-spline curves (see [3])
D;

xi(t) =Y di;N{;(t) t€[0,1], i=0,..,C (1)
§=0

of degree d, with the associated heights (z;)i=o,....c (i-e., zi3(t) = z;), are to
be interpolated by a C! (I = 1,2) surface y(z,t) with the parameter domain
(z,t) € [20, 2¢c] X [0,1]. The contour curves are defined over possibly different
knot sequences 7; with d+1-fold boundary knots 0 and 1 whereby all inner
knots have multiplicity d—[. We assume that points with the same parameter
t on adjacent contours (1) correspond to each other. The third coordinate
function of the interpolating surface will simply be equal to the z—coordinate,
y3(z,t) = z. In addition to the interpolation of the given contours, y(z;,t) =
x;(t) fori =0, ..., C, the surface y(z, t) is to preserve the sectional curvature of
the given contours. This notion has been introduced by Kaklis and Ginnis [6]:

Definition 1. The surface y(z,t) is said to be a sectional curvature—preserv-
ing (sc—p) interpolant if it possesses the following property for any pairx;_1(t),
x;(t) of adjacent contour curves (i = 1,...,C): if both contours possess non—
positive (resp. non—negative) curvatures at a point t = to, then also the cur-
vatures of all interpolating contours y(zo,t) with zo € [2;_1, z;], constant, are
non—positive (resp. non—negative) at this point.

The interpolating surface y(z,t) is an sc—p interpolant if the two inequalities
[Xi—1(t0),Xi—1(f0)] = 0 (resp. < 0) and [%;(to), Xi(to)] > 0 (resp. < 0) imply
[¥(z,t0),¥(2,to)] > 0 (resp. < 0) for all (z,t) € [2;—1, 2;]x[0,1] with1 < i < C,
whereby “*” denotes the differentiation % with respect to t. The abbreviation
[D; 4] = p1- g2 — p2 - ¢1 means the third component of the cross product of the
vectors P, § € IR>. Moreover we denote by < (B,q) € (—m, 7] the oriented
angle between the top views (orthogonal projections onto the plane z = 0) of
the two vectors P, g, whereas ||B|| = v/(p? + p2) is the length of the top view
of the vector p.

The construction of the interpolating surface is based on the following
two additional assumptions.

(1) The contour curves and their control polygons have coinciding shape.
More precisely, if x;(¢) has non—negative (resp. non—positive) curvature
for some of its polynomial spline segments, then the angles between ad-
jacent legs of the corresponding control polygon (d; ;) j=p, .. are also
non-—negative (resp. non—positive) but less than ;75 (greater then —775),

0 < (Apdij, Apdij+1) < 755

2
(resp. — 5 << (Apdij, Apydig+1) <0) )

for j=p,...,q with Afd; ; = d; j11—d; ;. (Note that the lower index of
the difference operator always refers to the number of the index where it
applies to.)
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Fig. 1. The definition of the interpolating surface.
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(7¢) Inflection or flat points of the contours x;(t) occur only at knots. In the
case of C? spline curves, the presence of an inflection or flat point causes
the three neighbouring control points to be collinear and we even assume
to have X;(tina) = 0 at this point.

The first assumption can always be made true by inserting additional knots

into the knot vectors 7; of the contour curves. The upper (resp. lower) bounds

for the angles are due to a sufficient convexity criterion by Goodman [2] which
will be used in order to guarantee the property of sc—p interpolation. The
second assumption is automatically satisfied if the contour curves have been
constructed with the help of the algorithm for shape preserving least—square
approximation presented in [4].

§3. Definition of the Surface and Continuity Constraints

The interpolating surface y(z,t) is defined as a composition of C tensor—
product B-spline surfaces (y,;(2,t))i=1..c- The degree of the parameter lines
t = const is equal to n > 21+2, whereas the contour curves z = const are of
degree d. The i-th surface patch y,(z,t) is defined over the parameter domain
(z,t) € [zi—1, 2] X [0,1] and it possesses the parametric representation

D;
yie) =Y dig(2) NGO (1=1,,0) (3)

with the D, 4+ 1 contour control points

n
~ Z— Zi_1 . ~
di-z:g Cijr Bp(-=—=—=), j=0,..,Di Amz=z1—2z, (4

running on Bézier curves with control points (¢; j x)k=o0,....n, cf. Figure 1.

The B-spline basis functions (Ng;(t)) i=o0,...p, i (3) are defined over the union
7A; of the knot vectors 7;_; and 7; of the adjacent contours. The blending func-
tions By (u)=(y)u*(1—u)™~* are the Bernstein polynomials of degree n. The
third components of the control points c; j i € R? of the surface y,(z,t) are
chosen according to ¢; j k3 = (1 — %) CZil1+ % - z; which implies y; 5(2,t) = z.
Moreover, the first and last control points ¢; jo,Cijn (j = 0, ...,ﬁi) of the
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trajectories of the contour control points (4) result immediately from the in-
terpolation conditions. They are obtained by representing the adjacent con-
tour curves x;_1(t) and x;(t) as B-spline curves over the knot vector 7; with
the help of the knot insertion algorithm, cf. [3].

The first and second components of the remaining control points are
unknown yet. They will be computed by solving an appropriate optimization
problem. Due to the required order [ = 1, 2 of differentiability they are subject

to the continuity constraints
8 A
=\ = ir1(2,t
vz, (82) y'L+1( )

(2) sz )

for A=1,...,0 and 7 = 1,...,C—1. Note that the B-spline basis functions of
adjacent surface patches are defined over the possibly different knot vectors
7; and ;1. After representing both sides of (5) over the union of these knot
vectors we obtain a set of linear equations for the control points c; ;x by
comparing the coefficients. The set of linear equations obtained from (5) is
denoted by CC;. Due to the different knot vectors of adjacent surface patches,
it includes certain not—a—knot—type conditions for the unknown control points.
Resulting from the choice of the polynomial degree n > 2[+2 of the parameter
lines t=const, each control point c; ;; is subject to one set CC; of continuity
constraints at most.

z2=2z;

84. Shape Constraints

Now we consider the conditions on one segment y,(z,t) of the interpolat-
ing surface which are implied by the desired shape of the contour curves.
According to the assumptions made in §2, the shape of the given contours
xi—1(t) = y;(zi—1,t) and x;(t) = y,(zi,t) coincides with the shape of the
control polygons ((Aii’j(zi_l))izo,m,f)i and (ai,j(zi))i:(),m,bi- We denote by

= B( Apic; i =0,...D; — 1 6
z% kA[lzl 1) [2Ci5k  (J ) (6)

the difference vectors (Aiz-,j+1 - (Ai” of adjacent contour control points. The dif-
ference vectors at z=z;_1 and z=z; are already known from the interpolation
conditions. The following conditions are sufficient for the desired property of
sectional curvature—preserving interpolation.

1.) If for two adjacent difference vectors of contour control points the in-
equality

0 <<}( _7( ) A[2]dz J+1( )) < ﬁ (7)
(resp. 0>§( 2di;(2), Apdi i1 (2) > - 755)

holds for both boundaries z=z; and z=z;_; whereby the angle < (...)
vanishes once at most, then we ensure that it is even true for all z €

[Zi—1, 2i]-
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2.) If the angle in (7) vanishes for z=z;_1 and z=z; then the control points
d; j+1(%i—1) and d; j+1(%;) are an affine combination of their neighbours,

digi1(zim1) = (1= p) - dig(zi2) + p- dijpa(zioa) @

dij+1(zi) = (1= 0) - dijj(2i) + 0 - dijj12(2i)
with some constants p, o € IR. Resulting from the assumption (ii) made
in §2, these numbers are equal, 0 = p. So we can add the linear equations

Cij+ik=(1—p) Cijr+tp Cijrarfork=0,.,n 9)

to the set of shape constraints. Note that these equations are compatible
with the continuity conditions obtained from (5).

The second case may happen for C? surfaces if both contour curves have an
inflection with the same parameter value ti,a. The two sets of constraints
obtained from 1.) and 2.) guarantee the following property: for each sub—
polygon ((.:li,j (2))j=p,..q 0<p<g< lA)z) of the contour control polygons the
angles between adjacent legs are always non—negative (resp. non—positive) for
all z € [zi_1, %] and smaller than ;"5 (resp. greater than —;"5), provided
that this is true for the boundaries z=z;_1 and z=z;. So it is possible to apply
Goodman’s sufficient convexity criterion [2]. Therefore the constraints imply
that the interpolating contour curves preserve the curvature signs of the given
contours.

The conditions obtained from 1.) are guaranteed with the help of linear
inequalities which are constructed using the following observation.

Lemma 2. Let a constant A € R and four vectors t, i1, Vo, V1 € R? satisfy-
ing || to|=||t: [|=[[Vol|=[I¥1]|=1 and 0 <q (To, T1) < 7, 0 < (Vo,V1) < 375
be given. If the control points fulfill the linear inequalities

[Apy(Cijk — ACijt1k)Uo] >0, [Ap€ijt1k, 1] >0,

and
[Vo, Ap21Ci k] >0,  [ApCijs1,k, V1] >0 (11)

for k = 0,...,n, then the trajectories of the contour control points satisfy the
relation in the first line of (7) for all z € [z;_1, z;].

Proof: The inequalities (10) and (11) imply that the difference vectors of the
control points ¢; j; can be separated as shown in Figures 2a and b. Due to
the convex hull property, this is also true for the difference vectors Ayd; ;(2)
of the contour control points for z € [z;_1].
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Fig. 2. Linearization of the shape constraints (top view).

As evident from Figure 2a the inequalities (10) lead to

[Ar2)(ds,;(2)=Adi j11(2)), Apdij41(2)][=[Apdi;(2), Apydi j11(2)] > (Z, )

12

thus they guarantee the left-hand side of (7). Similarly the inequalities (11)
imply the right-hand side of (7). m

We introduced the constant A (based on the identity (12)) in order to keep
the number of required inequalities as small as possible. Similarly one can
also modify the second argument of the bracket product [.,.]; this yields a
mirrored version of Lemma 2.

For generating the linear inequalities which ensure the constraints ob-
tained from 1.) one has to choose a couple of constants and bounding vectors.
This is done automatically with the help of algorithms described in the report
[5]. Due to space limitations we are not able to describe these algorithms in
more detail. They are based on so-—called reference curves (Afgﬂ(z)) =0, i1
which represent the expected turns of the difference vectors of the contour con-
trol points. For example, the reference curves can be chosen as segments of
Archimedean spirals which interpolate the difference vectors Apgd; ;(zi—1),
A[91d; j(z;) of the control points of the given contour curves.

Lemma 2 can also be applied to subsegments z € [z, ze] C [2i—1, 2] of
the trajectories 61” (z) of the contour control points. We then have to replace
the control points (¢; j x)k=0,...n by those of the subsegments which result
from the de Casteljau scheme. Sometimes it is necessary to use this idea in
order to obtain the linearized constraints, see [5].

§5. Computing the Control Points

The unknown components of the control points c; j, of the interpolating
spline surface are found by minimizing an appropriate objective function sub-
ject to the linear shape and continuity constraints. The objective function is
chosen such that the transition of the control polygons of adjacent contours
(x4(t))i=0,...,c becomes as smooth as possible. For this we take sample points
from the reference curves and minimize the corresponding least-square sum.
Moreover we add a “tension term” for the trajectories of the first and the last
contour control points, e.g. the sum of the squared lengths ||Azc;0,x/|* and
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Fig. 3. A spline surface which interpolates five given contours.

1Aic; p, lI? of their control polygons (i=1,...,n—1). This guarantees the
uniqueness of the solution, see [5].

We obtain a quadratic function of the control points c¢; ;  (i=1,...,C;
7=0, ...,ﬁi; k=1, ..., n—1). The minimization of the objective function un-
der the linear equality and inequality constraints ensuring the desired shape
and continuity properties therefore leads to a quadratic programming problem
which is solved with the help of an active set strategy as described in the text-
book by Fletcher [1]. This strategy requires an initial solution which has to be
constructed first with the help of linear programming, i.e., with the simplex
algorithm. We choose the initial solution as close as possible to the optimal
one. This is achieved by choosing the objective function of the auxiliary lin-
ear programming problem as the I! norm (taken in the linear space of the
unknown components of the control points) of the difference to the solution
of the unconstrained problem. The latter one is obtained by minimizing the
quadratic objective function under equality constraints (which arise from the
continuity and interpolation conditions) only. It can be computed using La-
grangian multipliers leading to a system of linear equations for the unknown
components of the control points.

Note that the existence of solutions is not automatically guaranteed. In
our examples, the feasible region of the LP problem was always non—empty.
It can be shown that solutions exist, provided that the polynomial degree n
of the parameter lines ¢ = const has been chosen high enough [5].
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As an example we show a spline surface which has been obtained by
interpolating five contour curves. The given contours are described by B-
spline curves of order three which are defined over different knot vectors. The
interpolating C' spline surface of degree (2, 3) preserves the signs of the sec-
tional curvature. Figure 3a shows the top view of the contour curves, whereas
the resulting spline surface and its control points have been drawn in Figure
3b. The construction of the surface led to a quadratic programming problem
with 92 unknowns, 48 equality constraints and 201 inequality constraints. In
our implementation we use the equality constraints for eliminating a part of
the unknowns from the problem; this yielded a QP problem with only 44
unknowns. Only four inequalities are active for the final solution.
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