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Abstract. A construction of linear sufficient convexity conditions for
polynomial tensor—product spline functions is presented. As the main
new feature of this construction, the obtained conditions are asymp-
totically necessary: increasing the number of linear inequalities in a
suitable manner adapts them to any finite set of strongly convex spline
surfaces. Based on the linear constraints we formulate least—squares
approximation of scattered data by spline surfaces as a quadratic pro-
gramming problem.
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Introduction

Convexity conditions for bivariate spline functions and the construction of convex
spline functions from given data has been subject of a remarkable number of publi-
cations. Results on convexity conditions for multivariate polynomials, in particular
for polynomials in Bernstein—Bézier representation over simplices, are summarized
in the survey article by Dahmen [6]. In the case of convexity constraints for tensor—
product spline surfaces, however, only relatively few related publications seem to
exist. Very strong conditions (which are only fulfilled by convex translational sur-
faces) have been derived by Schelske in his Ph.D. thesis, see also [12]. They have
been rediscovered by Cavaretta and Sharma in 1990 (cited in [6]). Some weaker
constraints which lead to systems of quadratic inequalities for the Bézier coefficients
have been developed by Floater [11]. A recent preprint of Carnicer, Floater and Pena
[2] derives weakened linear conditions.

In Section 2 we present a construction of linear sufficient convexity conditions for
polynomial tensor—product spline functions. For the sake of simplicity, the construc-
tion is described only for bicubic spline functions, but it applies to splines of arbitrary
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degree. As the main new feature of our construction, the obtained conditions can be
adapted to any strongly convex spline function, simply by increasing the number of
linear inequalities. Moreover we can even adapt the constraints to any finite set of
strongly convex spline functions.

One may identify a spline surface with a point in IR, where d is the number of
coefficients of the spline surface: the coefficients of the surface serve as coordinates
of the point. Then, points in IRY which correspond to convex surfaces form a convex
cone  C IR, as non-negative linear combinations of convex functions are again
convex. The linear convexity constraints of our construction describe a certain convex
polyhedral cone Q* C Q of IRY. We can weaken them such that this cone contains
any other polyhedron ) C © which has no points on the boundary 9§ of .

In this sense, the linear constraints of Section 2 could be said to be asymptotically
necessary (if the number if inequalities is increased in a suitable manner). These
conditions can be made as weak as necessary for the specific application. In Section
2.3 we present a comparison with the linear conditions of Carnicer et al.

In the remainder of the paper we use the linearized constraints in order to con-
struct a bicubic spline function which approximates given scattered data and ful-
fills additional convexity or concavity constraints. Constructions for surfaces from
given data with various shape restrictions have been discussed by various authors
(e.g., [3, 13, 15]), and it is virtually impossible to give a complete list here. Wille-
mans and Dierckx [18] use piecewise quadratic functions over Powell-Sabin splits for
bivariate least—squares approximation of scattered data with convexity constraints.
Based on convexity conditions obtained by Chang and Feng [4] they are led to a
quadratic optimization problem with linear and quadratic constraints.

We consider least—squares approximation by tensor—product spline functions sub-
ject to segment-wise convexity and concavity constraints. With the help of the pre-
viously constructed linear sufficient convexity conditions we are able to formulate
this task as a quadratic programming problem (minimization of a quadratic function
subject to linear constraints). This generalizes the method proposed by Dierckx [7]
to the bivariate case. A strategy for adapting the linear constraints to the given
data is presented. In order to keep notations relatively simple we consider only the
bicubic case, but it would be possible to generalize the results to arbitrary degrees.
The method is illustrated by two examples.

1 The approximation problem

In this article we develop a method for solving the following approximation problem.
A set of R+ 1 data {(zs,v:,2) | i=0,...,R} C [a,b] X [¢c,d] X R is assumed to
be given. These data are to be approximated by a bicubic tensor-product spline
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function which is required to possess a certain specified shape (see below),

f(@ Z Z y) dijs (1)
with the unknown coefficients d;; € IR. The B-spline basis functions (M;(z)); '
and (N; (y))?:_o4 are defined over the given knot sequences

E:(&),gl,...,gp) and®=(90,01,...,0Q), (2)

(P, @ > 7) respectively, whose knots are to satisfy

a=8§=86=86=83<<..<fpa<pi3=E& o=ECp_1=Ep =0,
c=0=0 =0 =0 <0 <..<0ps<Bgs=00s=0p =0g=d

For more information on spline functions we refer to the textbooks by Dierckx [8] or
Hoschek and Lasser [12]. Choosing 4—fold boundary knots we obtain B-spline basis
functions whose support is contained within the intervals [a, b] and [c, d]. Moreover
we get a C? spline surface, as all inner knots possess the multiplicity 1.

The choice of appropriate knots for bivariate spline fitting is a non—trivial prob-
lem. For more information the reader is referred to [8, Chapter 9], where an automatic
and adaptive algorithm for locating the knots is described (see also the concluding
remarks).

Restricting the spline function (1) to the segment

(z,y) € DD = [&,5,&4] % [0 its,0i4a] (0<i<P-7, 0<5j<Q—-7) (4)

we get a bicubic polynomial f®7)(z,) which may be represented in Bernstein /Bézier
form,

3 3
Z Z B3 J)) b(m) (5)
r=0s5=0

with the local parameters

o0 = T ) Y= Ois (6)
Eiva — &ixs 44 — 013

k
are affine combinations of the B-spline coefficients d; ;. They can be constructed

and the cubic Bernstein polynomials B} (z) = (3) Z¥(1 — 2)**. The coefficients b{")

using the knot insertion algorithm. For the convenience of the reader, the conversion
formulas are provided by Appendix A.

As the main feature of our scheme, the user has the possibility to specify the shape
of the spline segments D). This is done by choosing a value o) € {—~1,0,1} for
each spline segment. The spline segment D7) will be guaranteed to be convex (con-
cave) for o) =1 (69 = —1), whereas no restrictions are imposed if o) = 0

3
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holds. We assume, however, that no neighbouring concave and convex spline seg-
ments exist,

Vi1, J1, %2, J2 With 0 < 41,7 < P—-T7Tand 0< j1,o < Q =T

(7)

o601 gl2:32) = 1 = max{|i; — is|, [j1 — ja|} > 1.

In order to formulate constraints which guarantee the convexity of the spline segments
D7) we have to consider their partial second derivatives

(i k:2) P i) S (20 B3 (o)) k)

2,]:Ky,4— T — %] T — B T 7 B J bZJ: e 8
(k =0,1,2). Note that these derivatives are polynomials of degree (3,1), (2,2) and
(1,3). We represent them by bicubic polynomials as we will have to compute certain
linear combinations of them later. The formulas for their Bézier coefficients b2 —+)
are stated in Appendix B.

2 Linear convexity conditions

In the first part of this section we examine some linear conditions which guarantee,
that a symmetric 2 X 2-matrix is non—negative definite (also called positive semi-
definite). Based on these results we present linear sufficient convexity conditions for
the bicubic polynomial segments of the approximating spline function f(z,y).

2.1 Non—negative definite 2 X 2—matrices

At first we consider a symmetric (hy; = hy 2) real 2x2-matrix H = (h; ;)i j=1,2. In ad-
dition to the matrix, the two strictly increasing finite sequences ¥ = (¢g, 91, ..., ¥r)
and ® = (¢g, ¢1,- .., dg) satisfying

D=ty <Y1 <t <...<Yp=land 0=¢g< P < P < ... < pg =1

with R, S > 1 )

are assumed to be given. Let p(u,v) and ¢(u,v) denote the bilinear functions

pu,v) =1 —u) (1 —v)hi1+ (u+v—2uv)hig+ uvhyy,

10
qu,v) =1 —u)(1—v)hi1— (u+v—2uv)hig+uvhy (10)

of the parameters u,v. These functions are symmetric: p(u,v) = p(v,u), ¢(u,v) =

q(v,u). Moreover, restricting them to the diagonal leads to the values of the quadratic
polynomials

plu,u) = (u 1—u)-H-<1fu> and  q(u,u) = (u u—l)-H-( “ ) (11)
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Using these bilinear functions we associate with any matrix H and with any two
sequences ¥, @ the set

I(H,9,®) = {p(thi-1,¢s) > 01 =1,., R} U {q(¢j-1,¢;) 20 [j=1,.,5} (12)

of inequalities. If we assume that the sequences ¥, ® are known, then this set consists
of R+ S linear inequalities for the components h; ; of the matrix H.

The construction of the set of inequalities Z(H, ¥, ®) is based on the idea of blos-
soming, which is applied to the quadratic polynomials (11). Blossoming is one of the
standard techniques in Computer Aided Geometric Design, see [12]. It is a compact
way to generate the control points of subsegments of polynomials in Bernstein/Bézier
form. For instance, representing p(u, u) as polynomial over u € [¢;_1,1);] leads to the

Bézier coefficients p(vi—1, %i—1), p(¥i—1, ;) and p(v;, ;).
The inequalities Z(H, ¥, ®) possess the following properties:

Lemma 1. If the components h;; of the symmetric real 2 x 2-matriz H fulfill the
inequalities TZ(H, ¥, ®) for two arbitrary but fized finite sequences ¥, ® satisfying (9),
then the matriz H is non—negative definite.

Proof. It has to be shown that the conditions of the system Z(H, ¥, ®) imply
Zihig+ 221 20 b+ 23 hop > 0 (13)
for any (z1,2,) € R?\ {(0,0)}. Resulting from 1y = ¢y = 0 we get

p(to, Y1) = (1 = 1) hiy + 41 hyp > 0 and
q(¢o, 1) = (1 — ¢1) by — 1 hyp > 0.

Hence, as R,S > 1 (and therefore 1;,¢; < 1) was assumed, we have p(t, 1) =
q(do,60) = h1y1 > 0. Analogously, the two inequalities p(¢gr_1,%r) > 0 and
q(ds—-1,9s) > 0 yield p(vr, ¥r) = q(¢s, ps) = hop > 0.

First case: z; % > 0. We project (21,22) onto a point (2,1 — z) € IR?, see Fig. 1.
Choosing a = ‘;ﬁlﬁgl we obtain 2, = ez and z, = a (1—2z) for z = £z (but z = 0 for
z1 = 0). Note that z € [0, 1] holds. The above inequality (13) is therefore equivalent

to

(14)

a? (z2h1,1 +22(1—2)h1o+ (1 — z)2h2,2) =a’p(z,2) > 0. (15)
We have z € [1; 1, ;] for some fixed i, 1 < i < R. Exploiting twice the linearity and
symmetry of p(.,.) in each of its arguments we obtain

p(za Z) = ﬁ%p(wi—la )+1; %Zz (1/%,2)

= A p(hi, i) +2 W) by, )
() @ (+) ®)
G %)
%,_/

() (©)
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(Case 2) 29 Case 1
(2,1 —2)
<1
(21, 22)
O ///
Case 1 (Case 2)

Figure 1: Normalizing the direction (Zi, z5).

The three terms (%) are non-—negative as z € [¢; 1,1;] holds. According to one of
the inequalities of the set Z, also the middle coefficient (b) is guaranteed to be non—
negative. Consider the first coefficient (a). In case ¢ = 1 it is nonnegative due to
hip > 0, as already observed earlier. Otherwise we have

p(Wim1,thic1) = S5 pthig, i 1) + B2 p(gh g, 4) > 0. (17)
(*) (d) (x) (®)

The terms (*) are non-negative due to (9), whereas two inequalities from Z guarantee
the non—negativity of the coefficients (b), (d). Similarly we conclude that also the last
coefficient (c) is guaranteed to be non-negative. Therefore we have p(z,z) > 0 in
this case.

Second case: z; 7, < 0. We project (z1,2) onto a point (z,—(1 — 2)) € IR?, see

sgn(z1)
|Z1|+|22|

for z = Lz, (z € [0,1]). Inequality (13) is therefore equivalent to

again Fig. 1. Choosing once more o = we have Z; = az and z, = —a/ (1 — 2)

o? (22h1,1 —2z(1=2)ha+(1— Z)2h2,2) =a?q(z,2) > 0. (18)

Using similar arguments as in the first part of the proof (now applied to the poly-
nomial ¢(z, z)) shows that this inequality is again implied by the conditions of the
set Z. This completes the proof. ]

The lemma is based on conditions which guarantee the non-negativity of a polyno-
mial on an interval. Such conditions have been studied thoroughly in the literature,
see e.g. [16]. As the basic new idea behind the convexity conditions of the present
paper, we show that convexity of bivariate functions can be guaranteed by non-—
negativity of polynomials on intervals, and that this leads to arbitrarily weak linear
conditions.

The inequalities Z(H, ¥, ®) imply that the matrix H is non-negative definite.
The finite sequences ¥, ® control how necessary these conditions are. Refining these
sequences leads to weaker conditions:
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Lemma 2. Assume that the finite sequences ¥, ® result by inserting additional knots
into the finite sequences ¥, ® satisfying (9), i.e., the relations {¥} C {¥} and {®} C
{®} hold. Then the inequalities T(H, ¥, ®) imply the inequalities T(H, ¥, ®).

The proof of this observation is again a direct consequence from the blossoming
principle. For the sake of brevity it is omitted here.

It can be shown, that the inequalities Z(H, ¥, ®) can be applied to any positive
definite matrix:

Lemma 3. Consider an arbitrary but positive definite symmetric real 2 X 2 matrizc
H, ie., we have z"Hz > 0 for all z € R* \ {0}. Then two finite sequences ¥, ®
satisfying (9) exist such that the inequalities Z(H, ¥, ®) are fulfilled.

Proof. Consider the finite sequences ¥) = @) = {£ |k =0,...,2'} forl = 1,2, ...
We assume the above assertion is not satisfied for all [ € IN. This assumption will
be shown to lead to a contradiction.

For each | we consider the (possibly empty) sets

PO ={L|p(:t, L) <0and 1 <k <2,k € N},
i (19)
) 2l

QU ={k g5, k) <0and 1 <k <2 ke N}

According to our assumption, for each [ at least one of these sets is non—empty.

Moreover we assume that no number [ exists such that P = () holds for all I > [,.

(If this is not true, then we may consider the sets oW instead.) As all sets PO are
)

contained in the unit interval [0, 1] we can choose a convergent sequence (W) s

Wlth } € PUI) and strictly increasing refinement levels 1(5): I(4) < I(j + 1). Let

P = hm 2,%% be the limit of this sequence. According to our construction, we have

k() =1 k() oo k() =1 k()
Vi (=5 iy ) < 0> hence p(¢,¢) = lim p( —Tim—, 555 ) < 0. (20)
On the other hand we get
PR
pl, )= 1=4) -H-| 5)>0 (21)
as the matrix H is positive definite. This is a contradiction. ]

The proof of the lemma uses a simple uniform refinement of the sequences ¥ and @,
independent on the given positive definite matrix H. As a consequence of Lemma 2
we therefore have:

Corollary 4. For any finite set of positive definite matrices two finite sequences ¥, @
satisfying (9) exist, such that the inequalities T(H,V, ®) are fulfilled for all matrices.
For instance, choosing ¥ = W) = & = &) (see the proof of Lemma 3) with some
(big enough) refinement level L yields such a set of inequalities.

7
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Proof. Applying the previous Lemma yields finite sequences ¥, ® for each matrix.
Taking the union of these finite sequences leads to the desired set of inequalities. []

One could say that the inequalities Z(H, ¥, ®) are asymptotically necessary: they
can be made as weak as desired.

2.2 Convex bicubic Bézier patches

Now we consider one of the bicubic polynomial segments f®7)(z,y) with parameter
domain (z,y) € D®). The coefficients of the patch b(#) and those of the second
partial derivatives b{:5%0), p{tibb) | pled02) (r s = 0,1,2) are certain constant linear
combinations of the B-spline coefficients (dy;)k=i, . i+3;1=j,.j+3-

In addition to the sequences ¥ and ® from the previous section, we assume that
the two strictly increasing sequences II = (7, 71, ...,77) and A = (Ao, A1, .-, Ap)
satisfying

O:7r0<7r1<7r2<...<7rT:1and0=/\0</\1</\2<...<)\U:1

with T,U > 0 (22)

are given. These sequences are to be used in order to subdivide the patches f%9)(z, y).
In order to simplify notations we introduce the following abbreviation: We denote
by H(uy,v1,ws, s, va,we) = (h;;)ij=12 the real symmetric 2 x 2-matrix with the
components

3 3
hin = > pr(ut,vi,wi) ps(us, va, wo) b7(~z,’sj’2’0),

r=0s=0
3 3

hig=ho1 = Z Z pr(u1, v1, wr) ps(uz, vo, w2) b$f;j’1’1)a (23)

r=0s=0
3

ha,2 = Z Z pr(u1, v1, wi) ps(uz, va, wo) bﬁf’sj’oﬂ),
r=0s=0

with
po(u, v, w) = (1 —u)(1 —v)(1 —w),
p1(u,v,w) =u+v+w— 2uv — 2vw — 2uw + Juvw, (24)
p2(u, v, w) = wv + vw + vw — Juvw,
p3(u, v, w) = vvw.
Similar to the functions p(u, v) and g(u, v) of the previous section, the matrix compo-
nents are linear functions in w1, v1, w1, U9, V2, wo. The components are invariant with
respect to permutations of the arguments uy, v1, w; and us, v9, wy. Moreover, restrict-
ing the components to the diagonal 2 =y = v; = wy; and y(j) = Uy = Vg = Wy
yields the values of the partial second derivatives, i.e., the Hessian matrix:

hy (2@, 20 20) 40) y0) 40Dy = f@3.20)(z 4),
hio = ho1 = (2@, 2@ 20 y@) 4@) y0)) = fFEIL (1 4), (25)
hoo(z®, x® 20 40) 4 40y = fE50.2) (g 4).

8
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Analogously to the previous section, the matrix H (us,v1,w, g, V9, wy) has been
constructed by blossoming the Hessian matrix. If we restrict the Hessian matrix to
the sub-patch (z®,4)) € [mp_1,m] x [M—1, \i], then the corresponding 16 Bézier
coefficients are obtained from the blossom H (u1, v1, wy, ug, ve, we) for the values

(u17 V1, ’LU]_) € { (ﬂ-k—la Tk—1, 7Tk:—l)a (ﬂ—k—la Tk—1, ﬂ—k)a (7Tk_]_, Tk, ﬂ-k)v (ﬂ—k; Tk, 7r/€) }

[\ v

-~

and *) (26)
(ug,va, wo) € { (N—1, M1, Aim1), (N1 Aim1, Ay (Ai—1, A An), (Aas Ay Ar) -

~ /
~~

(%)

We consider the following set of inequalities:

TGN (T &, 11, A) = U T(H (uy, vy, wy, tg, va, ws), ¥, ®) (27)
(u1,v1,w1)€I*
(u2,v2,w2)EA*

with

T

II* = U{(Wz'—1,7Tz'—1,7Tz'), (7Tz'—1, T, 7Tz)} U {(WO,WO,WO)a (7TT,7TT,7TT)},
i=1

U (28)

A= U{()\i—la A1, Ai), (N1, A, A) U {(Ao, Aoy Ao), (Ao, Au, Av) -
=1

If we assume that the finite sequences ¥, ®, I and A are known, then this set consists
of (2T +2)(2U + 2)(R + S) linear inequalities for the coefficients b{'/*>*) hence for
the unknown B-spline coefficients d; ;. It possesses the following properties:

Theorem 5. If the inequalities T are fulfilled for four arbitrary but fized finite
sequences VU, @, 11, A satisfying (9) and (22), then the bicubic spline surface segment
) (z,y), (z,y) € DO, is conver.

Proof. It has to be shown that the real 2 x 2-matrix of the second partial derivatives
H(z®, 20 20 4@ y0) 40)) (the Hessian matrix) is non-negative definite for all
(2@, y)) € [0,1]%, i.e., for all (z,y) € D®) (cf. (6)). We consider an arbitrary
but fixed point (z®,y)) € [0,1]2. We have ) € [m;_1,m] and y) € [N_1, \]
for some fixed £k, 1 < k < T, and [, 1 <[ < U. Resulting from the inequalities
J9) | the 16 matrices H (uy, vy, ws,Us, U2, wo) which are obtained for all possible
pairs from (26) are guaranteed to be non-negative definite. This can be seen as
follows. For matrices obtained from the triples (u,vq,w;), (ug,ve, ws) marked by
(%), the inequalities Z(H(...), ¥, ®) are contained in the set. It is therefore possible
to apply Lemma 1. As an example for the remaining matrices we consider the matrix
H(mg_1,Tg—1, Tk—1, \i—1, Ni—1, ). If & = 1 holds, then the inequalities Z(H(...), ¥, ®)
are again contained in the set J7) and we use Lemma 1. Otherwise we may exploit
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the linearity and symmetry of the components h; ;(u1, v1, w1, g, V2, W) and obtain

H(Tg—1, Th—1, Tk—1, Ni—1, Ni—1, A1)

_— T —Tg—1
= mmy Hmeo1, me—1, Moo, A1, Aio1, Ai)

(a) ®)

Th—1—"Tg—2
+ Th—Th—_2 ﬁ(ﬂk 15 Th—1, Thy Ai—1, A= 1,)\1)

(a) ®)

(29)

The coefficients (a) are positive due to (22). The two matrices (b) are non—negative
definite, as the corresponding inequalities Z(...) are contained in the set 7@7). Hence,
also H(mg 1, Tk 1, Tk—1, \i—1, A1, Ay) is non—negative definite, as it is a non-negative
linear combination of two non—negative definite matrices. Analogous considerations
apply to the remaining 11 matrices obtained from (26).

Exploiting the symmetry and linearity of the components h; j(u1, v1, wi, us, vo, wo)
in uy, vy, w; and ug, vg, we three more times (for each triple!) we get

H(z®, x(z’) (@), yU), y), )
. (D —mp_ )" (g —)3=7 (5 ;)N —y())3—s
Z Z ( )( ) ’;Tkl 7Tk—k1)3 ’ (l)\ll—)\l—ll)‘g’l Hs (30)

r=0s=0 ~ -

(*)

where H, , denotes the matrix obtained by choosing the r-th element of the first
and the s—th element of the second set in (26), r,s = 0,1,2,3. All these matrices
are non—negative definite, and also the coefficients (%) are non—negative. Hence, the
Hessian matrix is non—negative definite. ]

The inequalities of the set J@7) are linear sufficient convexity conditions for the
bicubic patch f(7 )(a:, y). The finite sequences ¥, &, II, A control how necessary these
conditions are. Refining these sequences again weakens these conditions:

Proposition 6. Assume that the finite sequences ¥, ®,II, A result by inserting ad-
ditional knots into the finite sequences W, ®, 11, A satisfying (9) and (22), i.e., the
relations {¥} C {¥}, {®} C {®}, {II} C {II} and {A} C {A} hold. Then the
inequalities J9) (U, ®, 11, A) imply the inequalities J) (¥, ®, 11, A)

Similar to Lemma 2, the proof of this observation is a direct consequence of the
blossoming principle.
The conditions J®7) can be adapted to any strongly convex bicubic patch:

Theorem 7. Consider an arbitrary strongly convex surface patch, i.e., the 2 X 2
matrixz of the second partial derivatives is positive definite for all points. Then four
finite sequences U, ® 11, A satisfying (9) and (22) exist such that the control points
of the patch fulfill the linear inequalities of the system J 7).

10
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Proof. Consider the finite sequences II) = AW = {& |k =0,...,2'} for 1 = 1,2, ...
We consider the matrices H (u1, vy, wy, g, V2, wy) which are obtained for (uy, v, w;) €
O* and (ug, va, wo) € A see (28). We assume the above assertion is not satisfied
for all ] € IN. Then, according to Lemma 3, for each [ at least one of these matrices
is not positive definite. Otherwise we could find finite sequences ¥, ® for each matrix
H(..), such that the inequalities Z(H (..), U, ®) are fulfilled. Taking the union of all
these finite sequences would then lead to appropriate global sequences ¥, ® for the
set J (),

For each [ we consider the set

RO = {(uy, v1,wy, ug, vo, ws) | (u1,vy,wr) € MO* and (ug, v, wy) € AW* a1

and H (u1,v1, wq, U, Vo, W) is not positive definite }. (31

According to our assumption, this set is non-empty for all /, and it is moreover
contained in the six-dimensional unit cube [0, 1]°. We can therefore choose a conver-
gent sequence ((ul(r), ...,wg(r)))r_12 ~with (ui(r), ..., wa(r)) € RU™) and strictly

—4

increasing refinement levels I(r): I(r) < I(r+1). Let
(U1, U1, Wy, Uy, U, Wo) = lim (ua(r), ..., wa(r)) (32)

be the limit of this sequence. Note that 4y = v = wy = z € [0,1] and 4y = v, =
we = § € [0,1] hold, because the refinement level /() is strictly increasing for r — oo
(cf. (28) and the definition of I and A®). As all matrices H (uy(r), ..., wa(r)) are

Hessian matrix of the surface patch at (Z, 7). This is a contradiction. ]

Resulting from this theorem, the sufficient convexity conditions J®7) can be made
as weak as desired, they are again asymptotically necessary:

Corollary 8. For any finite set of strongly convez surface patches f@3) four finite
sequences U, ® 11 A satisfying (9) and (22) exist, such that the resulting inequalities
T (¥, ®,11, A) are fulfilled for all patches. For instance, choosing ¥ = (L) = & =
&) (see the proof of Lemma 8) and T1 = 1) = A = AU) (see the proof of Lemma
7) with some (big enough) refinement levels K, L yields such a set of inequalities.

The proof is analogous to that of Corollary 4. In this section we used a simple uniform
refinement strategy for the finite sequences W, ® II, A in order to prove Lemma 3
and Theorem 7. However, for applications as described in the next section it is more
appropriate to use an adaptive refinement strategy, because otherwise the number of
inequalities will be too large. Such a strategy will be presented in Section 4.

Of course we can also apply the conditions J7) to concave surface patches
@9 (z,y): we have simply to consider the functions —f4)(xz,y) instead.

11
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2.3 Comparison of different linear convexity conditions

In this section we compare our linear convexity conditions with those derived by
Carnicer et al. [2]. It is sufficient to examine the conditions which guarantee that
the Hessian matrix H = (h; ) j=12 is non-negative definite. Carnicer et al. propose
to use the sufficient conditions

Cxk ={K hi1 > |hi1a|, Khas > |hi2a|, h11+ K hoo > (K +1)|hyo
K hyg+ hoo > (K +1)|hiol}

’ (33)

for some constant K > 1, and in particular the choice K = 2 is suggested (with-
out further motivation). These conditions lead to a system of 8 linear inequalities.
Choosing K = 1 yields conditions which are equivalent to the four linear inequalities
which describe diagonal dominance of the Hessian matrix,

D = {|h11| > b1, |hoy

> hia}- (34)

Various other linear convexity conditions have been developed in the case of poly-
nomials defined over triangles, see [6]. According to [2], these conditions (especially
those proposed by Chang and Davis [5] and by Lai, see [2, 6]) are stronger than the
conditions Cs.

We compare the sufficient conditions of Carnicer et al. with the inequalities ob-
tained from (12) by choosing equidistant finite sequences ¥, ® with stepsize :

I,=1I(H,¥,,®,) with ¥, =&, =(0,+,2 ... 211) n=2,...,20. (35)

‘mon? Y T Y

The set Z,, contains 2n linear inequalities. The conditions Z, are equivalent to di-
agonal dominance D of the Hessian matrix. In addition, the criteria Zan and C5 are
equivalent.

In order to compare the conditions we performed the following numerical exper-
iment. Using pseudo-random numbers we generated 2,438 symmetric non—negative
definite 2 x 2 matrices H = (h; ;); j—1,2 with components from

{ (h11,h12,he2) € R? | h‘il + hiZ + h§’2 <1, h;; >0, hyy >0}, (36)

As non—negative definiteness is invariant with respect to scaling of the matrix by non—
negative factors, we chose the randomly generated components from the unit ball.
Matrices with negative diagonal elements were excluded because they are never non—
negative definite. For the experiment we generated 10,000 matrices with components
(h1,1, h12, hao) € [0,1]x[—1,1]x[0, 1] and considered only those 2, 438 matrices which
were non-negative definite and whose components were contained in the set (36).

We applied the conditions D, C; 5,Cs,C3,Cy and s, . . ., Z, to these matrices. The
following table shows the number of non—negative definite matrices which have been
detected by the various conditions. The second and third lines of the table give
the percentage of all (2,438) generated matrices and the number of inequalities,
respectively:

12
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’chlzl-g C1_5 CQ C3 C4 Ig I4 I5 I6 Ilg IQ() all
detected: 1764 2149 2250 2217 2170|2088 2217 2297 2347 ... 2427 2428|2438
percentage: 72.5 88.1 92.2 90.9 89.0(85.6 90.9 94.2 96.3 ... 99.5 99.6 | 100
# inequs: 4 8 8 8 8 6 8 10 12 ... 38 40 | —

The relation between the number of inequalities and the percentage of detected ma-
trices has been plotted in Figure 2. The circles indicate the percentages of detected

100% Too
Cp o 16

¢, 37
90% | 3 OI4

C1.58C4

T

80% |

D == Ig == Cl
70%

0 10 20 30 40#inequalities

Figure 2: Comparison of convexity conditions.

constraints obtained for K = 1.5,2,3,4 by the conditions of Carnicer et al. [2],
whereas the grey dots indicate the corresponding percentages for the constraints
T5,13,...,75. The figure illustrates that the percentage of detected constraints for
the conditions Z,, tends to 100% if the number of inequalities increases. It can also
be seen, that the eight linear inequalities of Cy perform slightly better than the eight
inequalities of Z,, but worse than Zs. In this sense, these conditions could be said to
be slightly “more efficient” than Z,. However, the construction of Carnicer et al. does
not offer the asymptotic necessity of the constraints Z,.

3 Computing the approximating surface

Based on the linear convexity conditions of the preceding section we are able to formu-
late our approximation task as a quadratic programming problem. After generating
the linear shape constraints (according to the specified shape of the approximating
surface) and choosing an appropriate objective function we construct an initial so-
lution. The coefficients d; ; of the approximating function are then found with the
help of appropriate tools from optimization theory.

3.1 Generating the shape constraints

We consider the bicubic polynomial segments f@9)(z,y) with (z,y) € D@ of the
approximating bivariate spline function (1), see (5) (0<i<P-7, 0<j<Q@Q-7). If a

13
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convex spline segment has been specified, 0("/) = 1, then we generate the linear
convexity constraints J /), see (27). Similarly, if a concave spline segment has been
specified, o(/) = —1, then we generate the corresponding linear concavity constraints
‘7((1)] ). This is easily achieved by applying the construction of the previous section to
the function — ) (z,y).

For generating the inequalities for each patch f(i’j)(x, y) we have to choose the
finite sequences ¥, ®, Il and A. Of course, one may choose different sequences for
each patch: W@ @61 [163) A6 We choose identical initial values for all patches,

U =00 = ¢ = o9 = (0.0,0.5,1.0)

- . 37
and TI =09 = A = AGH) = (0.0,1.0). (37)

After performing the refinement steps which are proposed in the next section, how-
ever, we will get generally different sequences, depending on the given data.
We collect all inequality constraints to a set 7,

— (4.4)
J= U J% u U Y. (38)
i=0,...,P—7 i=0,...,P—7
§=0,..,Q—7 §=0,...,Q—7
o(hi) =1 olhi)=—_1

For solving the quadratic programming problems as described below, it is very im-
portant to remove redundant constraints from this set as far as possible. Such re-
dundancies may occur

e at segment boundaries and at corners of the patches f(+9). The inequalities
Z(H (uy, vy, wy, ug, ve, ws), ¥, ®) which are obtained for

(ul, V1, wl) € {(7’(’0, 7T0,7T0), (7TT,7TT,7TT)} = {(0, 0, 0), (1, 1, 1)} (39)
and / or
(Ug, Vo, H)Q) € {()\0, )\0, )\0), (/\U, )\U, )‘U)} = {(0, 0, 0), (]., ]_, 1)} (40)

(cf. (27)) may be contained twice in J, depending on the specified shape of
the approximating spline function. For instance, the inequalities obtained for
(uy, vy, wi) = (1,1,1) in JO9) and those obtained for (uy, v, w;) = (0,0,0) in
J9) will be identical (if the sequences ¥, ® chosen for these patches are
identical) or at least dependent. One should therefore remove some of these
constraints from J.

e due to built-in continuity of the terms p(u,v) and ¢(u,v), cf. (10), which are
used for generating the constraints. Consider the piecewise bicubic polynomials
p(u,v) and g(u,v) which are obtained for hy; = f@520 by, = hy; = fE5LY
and hyy = f®302) Generally, for 0 < u,v < 1, p(u,v) and g¢(u,v) are then

14
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only guaranteed to be C° functions for (z,y) € [0,1]%. But, for instance, for
u = 0 we get functions which are guaranteed to be C' with respect to 7.
It is therefore not necessary to create constraints which guarantee the non—
negativity of the Bézier coefficients of these functions at all patch boundaries
(knot lines) with y = constant, provided that the corresponding inequalities
for the inner coefficients of the neighbouring patches are included in the set
J. Such redundant constraints may be generated (depending on the specified
shape for the approximating spline function) when computing p(to, 1) and
q(¢o, ¢1) for matrices H (u1, vy, wy, ug, Vg, wy) with

(Ug, Vo, w2) € {(/\0, /\0, /\0), ()\U, )\U, /\U)} = {(O, 0, O), (]_, ]_, ].)} (41)

Similarly, we may get redundant constraints when computing p(vg_1,%r) and
q(¢s—1, ¢s) for matrices H (uq, vy, wy, ug, va, we) with

(ub U1, wl) € {(7"0, o, 7T0)7 (7TTa T, 7TT)} = {(07 0, 0)7 (1’ 1, 1)} (42)
Of course, these redundant constraints should be eliminated from 7.
The set of inequalities which is obtained after removing the above-mentioned redun-
dant inequalities from J is denoted by J*.
3.2 The objective function

The objective function of our problem is obtained by combining the least-squares sum
for the given data (cf. (1)) with a weighted “tension—term” (also called smoothing
term),

F = F((di;)i=0..P—4,=0..0—1)

R [P-4Q—4 2
=2 | X X Mi(zx) Nj(ye) dij — 2 (43)
k=0 \ =0 j=0
P4t g ma 1 5)\2 | BP9t iy —diy 1)2
Tw L; jz::() ( S_Erfi—ll ) + zé:() ng ( ??j*l?j—ll)

with the weight w > 0. The objective function depends quadratically on the unknown
coefficients d; ;. The tension term [...] is introduced in order to guarantee that the
minimization of (43) leads to a full rank system of linear equations for the coefficients
d; ;. The tension term represents the sum of the squared lengths of the legs of the
B-spline control net; the constants z; and y; are the Greville-abscissae

1 1
T; = g(fm + &it2 + &ita) and y; = 5(77341 + Njt2 + Mj+3), (44)

see [9]. The weight w will be chosen such that the influence of the tension term is
rather small, compared with the least-squares sum, see below. Resulting from this,
the particular choice of the tension term is not so important. Instead of [...] one may

15



B. Jiittler/Convex surface fitting

also use certain integrals involving squared derivatives or not-a-knot-type conditions.
See [8, Chapter 9] for a detailed discussion of rank deficiencies and the use of tension
(smoothing) terms.

3.3 Initial solution

The approximating tensor-product spline function is to be found by minimizing
the objective function (43) subject to the linear shape constraints of the set J* of
inequalities. This quadratic programming problem is to be solved with the help of
an active set strategy which requires an initial solution. We construct the initial
solution in the following way: Solving the unconstrained problem (i.e., minimizing
the objective function F without constraints whereby the weight w is set to 0.01)
leads to coeflicients (d;ﬁj)i:o_, P-4, j=0..9—4 Which generally do not fulfill the inequalities
J*. With the help of the substitution

dij=di;+dt —d)  (i=0.P—4,j=0.Q—4) (45)

we introduce new variables dz(-j;-) and dg’;). The inequalities J* are transformed into
inequalities for these variables. The initial solution is found by minimizing the linear
objective function

P-4Q-4
dt) +d;) (46)
=0 7=0
subject to the linear constraints
T UA{d >0,d7)>0]i=0,...,P—4; j=0,...,Q—4} (47)

This linear programming problem can be solved with the help of the simplex algo-
rithm. In our implementation we use a public-domain optimization code provided
by Berkelaar [1].

The existence of solutions is automatically guaranteed, as at least constant func-
tions (d; ; = d for all ¢, j) satisfy all constraints J*. The choice of a constant function
as initial solution, however, would cause problems for the quadratic programming de-
scribed below, as the optimization would start in a highly degenerate situation (all
constraints would be active).

Due to the substitution (45), the objective function (46) measures the I' distance
(of the coefficients d; ;) to the solution of the unconstrained problem. Thus, mini-
mizing this function can be expected to lead to an initial solution which is relatively
close to the solution of the quadratic programming problem.

3.4 Quadratic programming

The initial solution is used in order to adapt the weight w of the tension term [...]
in (43). We choose the weight such that the value of the weighted tension term is
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L
100

adjusting the value of w we compute the minimum of the quadratic objective function

equal to times the value of the least—squares sum for the initial solution. After
(43) subject to the linear inequality constraints J*, i.e., by quadratic programming.
Due to the regularity of the objective function (which is guaranteed by adding the
tension term [...]), a unique solution for this constrained optimization problem exists.

Our implementation is based on the active set strategy as described in the text-
book by Fletcher [10], and it uses pseudo-random numbers to avoid cycling at degen-
erate situations. The computing times of our optimization code are not completely
satisfactory yet; perhaps a commercial package might lead to faster results.

Alternatively one may try to solve the quadratic programming problem with the
help of the LOQO package by Vanderbei [17] (an efficient implementation of an
interior-point method for large-scale linear or quadratic programming problems). In
our examples the active set strategy gave better results.

Solving the quadratic programming problem leads to the coefficients d; ; of the
approximating tensor—product spline functions. We will illustrate the method by
some examples in Section 5.

4 Adapting the constraints

After computing the solution of the first quadratic programming problem it is possible
to adapt the constraints by choosing more appropriate sequences W) ) T10)
and A7), This will lead to linear shape constraints which are better suited for the
approximating surface to the given data. We present two refinement strategies:

A: Adapting the subdivision of the directions. For each surface segment
f@)(z,y) we consider the system (12) of inequalities which is obtained for H =
H (uy, vy, w1, ug, v, wy) and ¥ = ¥OD & = &69) with (uy, v, w;) € MG and
(g, va, wy) € ABD see (28). Collecting these inequalities would yield the set 74,
cf. (27). If one of the inequalities p( ,(;_]1), w,(j’j)) > 0 is active (i.e., p(..) = 0 holds),
then we add the new knot L (4% + ) to the finite sequence WG9 (k = 1...RG:).
Analogously, if one of the inequalities ¢g( %_]f, qﬁ,(f’j )) > 0 is active, then we add the
new knot (4{7) + ¢{'”) to the finite sequence ®(4) (k = 1...5()).
B: Adapting the subdivision of the patches. We consider the inequalities
(27) which result for IT = I1¢%) and A = A®9). If at least one of the inequalities
Z(H(..),e) @D obtained for

(uy,vy,w) € {(W,(ciljl),ﬂ,(fljl),w,(f’j)), (W,(ciljl),ﬂ,(:’j),w,(f’j))} and (ug, v, wy) € ABD* (48)
is active, then we add the new knot %(71’,(:_1) + 77} to the finite sequence I16)
(k = 1...T%7). Analogously, if one of the inequalities Z(#(..), "D, @) obtained
for

(ug, vg, wo) € {(AEI) ABA) NGy (@A) 63 ABINY and (ug, vy, wy) € TED™ (49)
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is active, then we add the new knot %()\g_]f + A%} to the finite sequence A
(k = 1..UGD). As neither T nor A is to be preferred, the refinement for A7)
is computed with the original sequence I1(*/). Tf both refinement criteria (48) and
(49) are fulfilled, then both sequences I1%?) and A®7) are refined.

Both refinement strategies leads to sets of inequalities which are weaker than the
original ones. After the first approximation (with uniform finite sequences) we apply
one of both refinement strategies. Based on the new finite sequences we get weaker
convexity conditions which lead to a better approximating spline function (1). The
first solution may serve as the initial solution for the second quadratic programming.
The obtained solution can be used once more in order to adapt the finite sequences.
Iterating this procedure a few times yields the final result.

In our examples, the first refinement strategy often led to a bigger improvement
of the objective function than the second one. Thus, one should use the first strategy
more often than the second one. For instance, one may use the first strategy a few
times and then apply the second strategy once.

Whereas the number of variables for the approximation problem remains un-
changed, adapting the finite sequences increases the number of inequalities. Of
course, refining the knot vectors = and © of the approximating spline function si-
multaneously would be possible.

5 Examples

For the first example we sampled randomly 121 data points with (z,y) € [0, 1]* from
the function z* + 5(y — 0.6)2> + 1. The z—values of the data have been perturbed
with the help of pseudo-random numbers. The same function has been used as an
example in [18]. These data have been approximated by a bicubic spline function
with 6 x 8 patches (99 coefficients). The unconstrained and the convex approximation
are compared in Figure 3, where the obtained approximating functions have been
plotted. The plots show the level curves of the approximating spline functions (thin
black lines), the given data and the error vectors (short black lines) and the control
nets (thick grey lines).

The unconstrained approximation (a) possesses a lot of oscillations and non—
convex regions, in particular along the boundaries. This can also be seen from the
determinant of the second partial derivatives, Figure 3c: negative values of the de-
terminant correspond to non-convex regions of the approximating spline function.
(Only regions with positive values of the determinant have been drawn.)

The convex approximating surface (b) has been obtained after 3 iterations of
our method. All patches of the spline function are restricted to be convex. At first
we solved an quadratic programming (qp) problem with 1385 inequalities and 99
unknowns. 32 inequalities were active for the solution. Applying the refinement step
A twice led to qp problems with 1853 and 2436 inequalities with 41 and 54 active
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Figure 3: Example 1. Unconstrained approximation (a), convex approximation
(b) and the determinants f, fy, — fz, of the Hessian matrices (c,d).

inequalities for the solutions. The final value of the least-squares sum (0.221 after
the first quadratic programming) was 0.095. The determinant of the Hessian matrix
(d) is now nonnegative on [0, 1]°.

For the second example we sampled 121 data points with (z,y) € [0,1]* from
the function cos(7 \/i 22+ (y — 3)?). Again, the z—values of the data have been
perturbed by pseudo-random numbers. These data are approximated by a bicubic

spline function with 8 x 8 patches (121 coefficients). Analogous to the first example,

the unconstrained and the convex approximation are compared in Figure 4. For
computing the constrained approximation we specified the desired curvature signs
of the spline segments. These signs are indicated in Figure 4e. For the constrained
approximation, the determinant of the second partial derivatives has non—negative
values in regions which are specified to be either convex or concave. In contrast to
this, the corresponding plot (c) for the unconstrained approximation indicates giant
hyperbolic regions.
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Figure 4: Example 2. The uncon-
strained approximation (a), the con-
strained approximation (b) and the
determinants fy, fyy — f7, of the Hes-
sian matrices (c,d). The knot lines
and the specified curvature signs are

shown in (e).

Concluding remarks

In this paper we presented a new construction for linear sufficient convexity condi-
tions for polynomial tensor—product spline functions. The obtained constraints have
been used in order to formulate convex least—square approximation as a quadratic
programming problem. Our present implementation of the method is not completely
satisfying yet: adapting the constraints sometimes leads to high numbers of inequal-
ities. Each of these inequalities involves only relatively few coefficients d;; (16 at
most), so it would be advantageous to exploit this sparsity, both for the storage of
the constraints and for the quadratic programming.

We prescribe only regions with convex or concave shape, but no constraints for
the remaining spline segments are imposed yet. The resulting unconstrained spline
segments often possess a wavy shape (see the second example). By generalizing the
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linear shape constraints one could try to specify directions with positive and negative
second directional derivatives for each spline segment. Of course, one would need to
estimate these directions a priori from the given data.

As pointed out by the referee, one could combine the methods of this paper
with an strategy for adaptively adding knots &, 0; until the sum of the squared
residuals is less than an upper bound (cf. [7] for the curve case). This nice idea
would automatically produce appropriate knots for the splines. In addition to the
refinement strategies of Section 4 one would have to apply refinement strategies for
the spline knots. Moreover, in many cases this idea would also lead to a suitable initial
solution: one might use an unconstrained least—squares approximation over sparser
knot vectors. On the other hand, the use this idea would result in a higher number
of quadratic programming problems which need to be solved. In our implementation
we therefore keep the numbers of knots (which are chosen with the help of some
heuristics) always fixed.

Appendix A: Polynomial segments of bicubic tensor—product splines

The coefficients of polynomial segments (5) of the spline function (1) result from

3 . -
b =303 B ik (50)

k=0 1=0

with the coefficients ﬁff,)c,

G Gira — &iv3 Civa — &ins @ _ i+ — &ire &ivs — Cite
/BO,O - ) BO,Z - )
Siva — &iv2 Giva —&in Eiva — &ive &ivs — it (51)
(i) _ Siva = &iys &ixs — & n Eivs — Cive &ivs — Cigs
O s — Gy Ga— &1 G — Givo Givs — Givo

549 Eits — Eivs 549 Eits — Cit2

" Giys — &2 “ iy — Gigo
(52)

B8 = irs — &iva 54 — ira — Eivo

21T s — Gt 227 Giys — Ein

8 = Sivs — Civa Civa —&iv2  Eiva — &ixs Cive — Eiva
27 G —&ivs Ciys—Give | Civs — &z Eive — Eirs
(53)
B9 = Eivs — Eiva Cixs — &iva 80 = Siva — &irs &iva — &iys
MU s — &ivs Eiys — Eigo  Eivs — s Eire — Civs

_|_

’

and

B = B9 = g = g8 = g — g¢

) ) ) )

= 0. (54)

O —

The formulas for remaining coefficients vgl) are obtained from (51)—(54) after replac-
ing £ by 6, ¢ by j and 8 by 7.
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Appendix B: Second partial derivatives of bicubic patches

The coefficients b{%/#2~%) (k = 0,1,2) of the second partial derivatives (8) are ob-
tained from
1

(4,5,2,0) R & 1 2 1(1,9)
(b"’s )r:O..3,s:O..3 T (Eipa—Eirs)? D, <A[1]br’5 )r:() 1,5=0..3

plésd1s1) — DT - ( Ap1 Ao b(87) - Do,
( " )’":O"3’5:°"3 (Eiva—Eirs) (Oj4a—0j13) ( s )r=0--2,s:0--2 2

. 1 o
(b?(”fgj’()ﬂ))r:o..3,s:o..3 - (0j44—0j43)? <A[22]b£f;]))r:O..3,s:0..1 - Dy
(55)
For computing these control points we need the degree elevation matrices
RN o -
D1:<0 ? 3 1) and Dy=[0 £ £ 0 (56)
303 00 3 1

and the difference operators Az, s = Tpy16 — s and ATy s = Tp 511 — ZTrs. With
the help of the formulas from Appendix A we can express these control points as
linear combinations of the spline coefficients d; ;.
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