Spatial Rational Motions
and their Application
in Computer Aided Geometric Design

B. Juttler

Abstract. Using rational motions it is possible to apply the powerful
methods of Computer Aided Geometric Design to kinematical problems.
The present paper discusses the so—called sweeping surfaces which are
generated by the motion of a rigid profile curve through space. As the main
result we derive a general construction of rational tensor—product sweeping
surfaces of fixed polynomial degree. Rational surface representations prove
to provide the exact description of non—trivial sweeping surfaces.

§1. Introduction

During last years, the use of rational curve and surface representations (e.g.,
non—uniform rational B-spline (NURBS) curves and surfaces) has been a sub-
ject of increasing interest in Computer Aided Geometric Design. Based on
such representations it is possible to apply the powerful methods of CAGD to
kinematical problems, e.g. from Robotics or from Computer Graphics.

Rational motions can be said to be the direct generalization of rational
curves to Kinematics. Such motions have been discussed already in 1895 by
Darboux [3]. They are defined by the property, that the trajectories of the
points of the moving object(s) are (piecewise) rational curves. Therefore we
can apply the algorithms of CAGD directly to these curves. Additionally,
the surfaces which are generated by rational motions (as envelopes of moving
planes or as sweeping surfaces) are rational tensor—product surfaces. Result-
ing from this, the use of rational motions in Kinematics supports the data
exchange with CAD systems.

Rational motions can be constructed with help of a representation for-
mula derived in [7]. Based on B-spline techniques some methods for the
computer-aided design of rational motions have been developed in [8]. The
motions can be described with help of a control structure which generalizes the
control polygon of rational Bézier or B-spline curves. For instance, using this
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2 B. Jittler

control structure it is possible to formulate a simple algorithm for collision de-
tection. In order to construct a (piecewise) rational motion from a sequence
of given positions of a moving object, the interpolation and approximation
problem is discussed in [8].

In the present paper we examine the construction of rational tensor—
product representations of sweeping surfaces with a kinematical net of pa-
rameter lines. Such surfaces are “swept out” by the motion of a rigid profile
curve through space. A remarkable illustration of the construction of a sweep-
ing surface is given by Figure 1.12 of Bézier’s preface to [5]. Note that the
so—called “lofting modellers” of CAD systems are based on a similar principle
of surface generation. Rational tensor—product representations of sweeping
surfaces with a kinematical net of parameter lines have been discussed by
Roschel at first [11] (cf. also [9]). He proved that any such representation of
degree (m,n) (where n is the degree of the profile curve) is generated by a
rational motion of maximal degree 2m.

Based on the representation formula for spatial rational motions, the
present paper derives a stronger result. We obtain a general construction
of rational tensor-product representations of sweeping surfaces with a kine-
matical net of parameter lines. For instance, such representations can be
constructed by interpolating a sequence of given positions of the profile curve.

§2. Spatial Motions

This section presents some notions from spatial kinematics. For a more de-
tailed introduction the reader is referred to the textbook of Bottema and
Roth [1].

Consider two coinciding Euclidean 3-spaces E resp. E which are asso-
ciated with Cartesian coordinate systems. The two spaces are projectively
completed by adding points at infinity which correspond to classes of parallel
lines. The points p, q,r resp. P, q,T of both spaces will be described with help
of homogeneous coordinate vectors, see [6]. For instance, let p = (po p1 p2p3) "
(p € R*\{0}) be the homogeneous coordinate vector of a point from E
(po # 0). Then, the Cartesian coordinates (z,yp2p) of this point can be
obtained from

P b2 p3
Tp . Yp - and 2z, e (1)
The vectors p and Ap describe the same point of E for any real A # 0. Homo-
geneous coordinate vectors with pg = 0 (but (p1, p2, p3s) # (0,0, 0)) correspond
to points at infinity.
The linear transformation M : E = E:p— p = M - P with

Vg ‘ 0 0 0
_[»]
M = Vg vg U

U3

where vo = v§(dZ +d2+di+d3) (2)
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and
d@ +dE —d2 —d? 2(d1ds — dod3) 2(dq1d3 + dods)
U= 2(dqdy + dods) d@ —di+d2—d2? 2(dods — dod) (3)
2(dqd3 — dods) 2(dsds + dody) d@ —d? —d2 +d2

(’US, V1,...,03,dg,...,d3 € IR, ’US 75 0, (do, dy,da, d3) 75 (0, 0,0, 0)) describes
an Euclidean spatial displacement: the space E results from E by a translation
composed with a rotation. At first, the origin of E is translated to the point
v = (vpv1 v2v3) T, then a rotation around the axis with normalized direction
vector T and angle ¢,

dy
¢ do - 1
cos — = , sin-T= da | (4)
2 JdZ+dE+d}+d2 2 Vg +df +dF +d3 \ g,
(|I¥]] = 1) is applied. The four numbers dy, ..., ds represent the rotational
part (3) of the spatial displacement. They are called the Euler’s parameters
of this mapping, see [1]. If the 8 parameters v§, vy, ..., vs, do,. .., ds are chosen

as continuously differentiable functions of the time ¢, then we obtain a one—
parameter family of spatial displacements:

M@ :E—E: (B,t)—p(t) =M()p. (5)

This family describes an Euclidean motion of the moving space E with respect
to the fized space E. The curve p(t) = M (t) P represents the trajectory or the
path of the point p € E of the moving space (cf. Fig. 1). Note that the
parametric representations M (¢)p and o(t) M (t)p describe the same curve
for any real function o(t) # 0.

§3. Sweeping Surfaces

Let an Euclidean motion M = M/(t) be given. Additionally, consider a seg-
ment p(v) C E of a curve in the moving space (v € [0,1]). The parametric
representation

y(t,v) = p(t,v) M()B(v) (t,v) € [0,1]? (6)
describes the surface patch which is “swept out” by the motion of the rigid
profile curve p(v) through the fixed space E (see Figures 3 and 4 and 1.12 of
[5]). The use of homogeneous coordinates provides the multiplication of the
right—hand side of (6) by the arbitrary real function p(¢,v) # 0 ((t,v) € [0, 1]?).

The parameter lines v = const. of the surface y(t, v) are the trajectories of
the points on the profile curve, whereas the parameter lines t = const. describe
the positions of the moving profile curve at the instant ¢, hence they are
congruent. Such a surface will be called a sweeping surface and its parameter
lines are said to form a kinematical net.

Note that a kinematical net of parameter lines is a relatively special para-
metric representation of a sweeping surface. For instance, any quadric surface
is the sweeping surface of a conic section [2], but there exist many para-
metric representations where the parameter lines do not form a kinematical
net, cf. [4].
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§4. Rational Sweeping Surfaces

In Computer Aided Geometric Design, curves and surfaces are often described
with help of polynomial or rational parametric representations. For instance,
a rational tensor—product Bézier surface patch of degree (m,n) is given by

n

x(t,v) = Z Bi"(t) B} (v) p; ;- (7)

The symbol Bf(s) = (’l“) s'(1 — s)k=! denotes the I-th Bernstein polynomial
of degree k. The coefficients p; ; € IR* are the homogeneous coordinates of
the control points, cf. [6]. In the following we will construct parametric rep-
resentations of sweeping surfaces by rational tensor—product Bézier surfaces.
Rational surfaces will turn out to provide the exact description of sweeping
surfaces.

Consider a a rational sweeping tensor—product Bézier surface (7) of degree
(m,n), where the parameter lines are assumed to form a kinematical net. The
moving profile curve p(v) C E of this surface (cf. (6)) is described by the
rational Bézier curve

= Z BMv)q; ve0,1] (8)

with control points q; € E. Then we have:

Proposition 1. If the profile curve of the rational tensor-product sweeping
surface (7) of degree (m,n) is no segment of a straight line, then the motion
M (t) which generates the surface (see (6)) has the following properties:

1.) The trajectories of the points of the moving space are rational Bézier
curves.

2.) There exists a plane in the moving space, such that the trajectories of
the points contained in it are rational Bézier curves of degree m in t.

Proof: Resulting from (7) and (8), the definition (6) of a sweeping surface

yields
> Bi(v) Z bpij = Z B} (v) plt,v) M(£)@;. (9)

1=0

By comparing the coefficients of the B;?(v) on the right— and on the left—hand
side we obtain immediately

ZB?(t)pi,j:N(t)aj (j=0,...,n) (10)

where N(t) = p(t)M (t) has been set. (Note that p(¢,v) = p(t) because the
left-hand side of (10) does not depend on v.) The profile curve (8) was
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assumed to be no segment of a straight line, therefore at least three non-—
collinear control pomts qJ ,q]2 and qJ exist, i.e., the three homogeneous
coordinate vectors g, ,q;,,d;, are linearly mdependent Let p = aq; +

B4q;, +v4q;, (o, 8,7 € R) be an arbitrary point of the plane in E which is
spanned by the three points q; ,q;,,d;,- Resulting from (10), the trajectory

m

N(t)p=N(t) (aajl +ﬂﬁj2 + ’Yajg) = Z B*(t) (ap; j, + BPij, +VYPijs)

i=0
(11)
of this point is a rational Bézier curve of degree m. This proves the second
part of the proposition. The first part can be proved similarly by observing
that the cross—product of two rational curves (in Cartesian coordinates) yields
again a rational curve. H

In addition to the above result, Roschel has proved that the trajectories of
the points of the moving space are rational curves of maximal degree 2m.
Moreover, if the profile curve is a non—planar curve, then the trajectories turn
out to be rational curves of maximal degree m [11]. Based on a representation
formula for motions with rational trajectories we will derive a stronger result.

§5. Rational Motions
Consider again a spatial motion M = M (t) as introduced in (5).

Definition 2. If the trajectories of the points of the moving space are rational
Bézier curves (see [6]) of degree m in t, then the motion (5) is called a rational
motion of degree m. Such a motion can be described by a matrix—valued
function M (t), where all components are polynomials of maximal degree m.

Rational motions seem to be the appropriate tool to apply the methods of
Computer Aided Geometric Design to problems from Kinematics and Ro-
botics. Such motions can be constructed with help of the representation of
spatial displacements presented in Section 2. If the 8 parameters vg(t), v;(t)
and d;(t) are chosen as polynomials of the maximal degrees m — 2k, m and
k, respectively (i = 1,...,3; j = 0,...,3), where the number k satisfies
0 < k < %2, then the equations (2) and (3) yield the matrix representation of
a rational motion of degree m. It is possible to construct all rational motions
in this way? The answer is given by

Theorem 3. Let a rational motion of degree m be given. Then a number
k with 0 < k < % and 8 polynomials vg(t), v;(t) and d;(t) of the maximal
degrees m — 2k, m and k, respectively, exist (i =1, .. 3 j= ,3), such
that the matrix—valued polynomial obtained from (2) and (3) descr1bes the
given motion.

This result has been derived in [7]. A detailed geometrical discussion of ra-
tional motions of order m < 4 is given in [3,12,10].
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As an example, Figure 1 shows a segment of a rational motion of degree 4.
The moving space E is represented by some positions of the moving unit cube,
where the three pairs of opposite faces are marked by squares, triangles and
crosses, respectively. Additionally, some positions of the moving coordinate
system (in gray) and the trajectory of the point (1111)T € E (a rational
Bézier curve of degree 4) and its control polygon have been drawn.

The coordinate system of the fixed spaceAE*&

The coordinate syster,p and the unit cube
of the moving space E

Thetrajectory of thepoint (111 1)T by
and its control polygon

Fig. 1. A rational motion of degree 4.

§6. The Construction of Rational Sweeping Surfaces

Rational tensor—product sweeping surfaces have turned out to be generated
by rational motions, cf. Proposition 1 and Definition 2. On the other hand,
any rational motion can be constructed with help of the representation (2)
and (3), see Theorem 3. The discussion of rational sweeping surfaces will be
continued with help of the following

Lemma 4. Let four polynomials dy(t),...,ds(t) be given. Consider the first
two columns of the 3 x 3—matrix U (t) obtained from (3). If the linear factor
(t — to) (to € C) divides the first two columns of the matrix U(t) and the
polynomial do(t)%2+d1 (t)2+da(t)2+d3(t)?, then it divides the four polynomials
do(t),...,ds(t).

Proof: By assumption, the real number #j is a root of the components of the

first two columns of U(t) and of the polynomial do(t)% + ...+ d3(t)?, i.e., the
5 equations

dg +di+dy+d; =di+dl—di—d? =di—di+dy—d; =0
t=tg t=tg t=to
(12)
and
dy do + dg d3 =didy —dpds =0 (13)
t=to t=to
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hold for t = t5. From (12) we obtain immediately

dy = dy = —d; : (14)
t=to t=to t=to
whereas (13) yields
do ds =dy ds = 0. (15)
t=to t=to
Therefore, the equations
do =d, =dy =d3 (16)
t=to t=to t=to t=to

have to be satisfied. This proves the assertion. H

As an immediate consequence we have:

Corollary 5. Consider a rational motion M = M(t) obtained from (2) and
(3) by choosing the parameters vy, v1, v, vs and dy, . ..,ds as polynomials. If
an arbitrary polynomial £ = £(t) divides the first three columns of the matrix
M(t), then it also divides the whole matrix.

Proof: Let £(t) = a(t)-B(t), where the polynomial (t) divides v§(t) and the
polynomial 3(t) divides do(t)? + ...+ d3(t)?. (This factorization is possible
as £(t) divides the polynomial vg(t), cf. (2)). Resulting from Lemma 4, S(t)
divides the four polynomials dy(t),...,ds(t), thus it is a divisor of all com-
ponents of the matrix U(t), cf. (3). Hence, the polynomial £(¢) divides the
whole matrix M (t). W

Based on this corollary we are able to discuss rational motions M (t), where
the trajectories of the points of a plane are of maximal degree m in ¢:

Proposition 6. Consider a rational motion M = M(t). If there exists a
plane in the moving space, such that the trajectories of the points contained
in it are rational Bézier curves of maximal degree m in t, then the motion
M (t) is a rational motion of maximal degree m.

Proof: Let without loss of generality the trajectories of the points of the plane
Z3 = 0 be rational Bézier curves of maximal degree m in t. The motion can
be described by a matrix—valued polynomial M (t), where the components of
this matrix do not have any common divisors (i.e., gcd(m; ;(t))i j=0,1,2,3 = 1).
Because of Corollary 5, the components of the first three columns of M (t) do
not have any common divisors. Therefore, the first three columns of M(t)
are of maximal degree m in ¢, as the trajectories of the points of the plane
T3 = 0 were assumed to be rational Bézier curves of maximal degree m in t.
Resulting from Theorem 3, (2) and (3), the motion M(t) is a rational motion
of maximal degree m. W

Now we are ready to state the main result of this section:
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Theorem 7. If the profile curve of the rational tensor-product sweeping
surface (7) of degree (m,n) is no segment of a straight line (i.e., if the surface
(7) is no segment of a ruled surface), then this surface is generated by a rational
motion of maximal degree m. Therefore, the parametric representation of the
sweeping surface can be constructed from

x(t,v) = M(t) - p(v), (17)

where M (t) is a rational motion of degree m (see Theorem 3) and p(v) de-
scribes the moving profile curve (cf. (8)).

The proof results from Propositions 1 and 6. With help of this theorem we can
easily construct all rational tensor—product sweeping surfaces of the (fixed)
degree (m,n).

From the representation formula for rational motions (Theorem 3, (2)
and (3)) and from the above theorem it is obvious, that polynomial (integral)
sweeping tensor-product Bézier surfaces with a kinematical net of parameter
lines can only be constructed by choosing the parameters v§(t), do(t), di(t),
da(t), d3(t) as real constants. Thus, such surfaces are generated by rational
motions with constant rotational part, i.e., any two positions of the moving
profile curve are related by a translation. Therefore we have: Polynomial
tensor product sweeping surfaces with a kinematical net of parameter lines are
translational surfaces, i.e., they are generated by translational motions. As
another advantage of rational surface representations, these surfaces support
the exact description of non—trivial sweeping surfaces.

§7. Interpolation by Rational Sweeping Surfaces

Finally we will outline a method for interpolation by rational tensor—product
sweeping surfaces. Let [ + 1 positions of the profile curve p(v) C E be given.
These positions are described by the ! + 1 spatial displacements Q; (i =
0,...,1), cf. (2). Additionally, a sequence of parameter values (instants) ¢;
which correspond to the positions of the profile curve is assumed to be known.
The position of the profile curve at the instant t = ¢; is given by its image
under the spatial displacement @;. If the parameters ¢; are unknown, then
they can be estimated from the distances between the given positions of the
profile curve, cf. [8].

As an example, Figure 2 shows 4 given positions of the profile curve,
where the profile curve is a segment of a cubic rational Bézier curve. The
spatial displacements Qg ..., (3 are represented by the positions of the unit
cube, where its faces are marked analogously to Figure 1. The profile curve is
contained in the plane of the o-marked face of the unit cube. An equidistant
distribution of the parameters ¢; has been chosen.

We will construct a rational tensor-product sweeping surface which inter-
polates the given positions of the profile curve. This surface is constructed in
two steps: At first, the generating motion M = M (t) of the sweeping surface
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The positions of the profile curve Qs ’p\)(v)
o N0

Qo P(Y) Q- P(V) ﬂe

N\
t;=1.0

n Iy
o =
ty=0.0 t; =0.333 u
The positions of the unit cube t, = 0.667

Fig. 2. The given positions of the moving profile curve.

is found by interpolating the given spatial displacements. This motion has to
satisfy the interpolation conditions

M(tz) = )\zQz (’L = 0, ceey TL), (18)

where the positive real factors A; can be used as design parameters. For
details of the method the reader is referred to [8], where interpolation by
spatial (piecewise) rational motions has been discussed thoroughly.

The motion of the profile curve
M() B \\5

&

Y JU

=
<= | =y, —]
B
tp=0.0 t; =0.333 u a
t, = 0.667
The motion of the unit cube

Fig. 3. The interpolating motion.

In the second step, the interpolating sweeping surface is found by moving
the profile curve through space, i.e., from x(¢,v) = M(¢) - p(v).

The last two figures illustrate the construction of an interpolating sweep-
ing surface from the given positions of Figure 2. Figure 3 shows the interpo-
lating motion which is represented by some positions of the profile curve and
of moving unit cube (similar to Fig. 2). The resulting rational tensor-product
representation of degree (6,3) of the constructed sweeping surface (in gray)
and its control points are drawn in Figure 4.
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10.

11.

12.
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The sweeping surface

The control net of the surface

Fig. 4. The rational tensor-product sweeping surface.
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