Chapter 1
Techniques for fair and shape—preserving surface
fitting with tensor—product B-splines

J. Hoschek and B. Jittler

Abstract. Tensor-product B-spline surfaces combine computational efficiency with geometric flexi-
bility; this makes them a powerful tool for describing free—form surfaces in Computer—Aided Geometric
Design. This chapter reports on methods for fair and shape—preserving surface fitting with tensor—product
B-splines, both for functional and parametric surfaces. The techniques for fair surface design are based on
several fairness measures, including isophotes, reflection lines, and various energy functionals. In addition,
we describe shape—preserving techniques, where the desired sign of the Gaussian curvature can be chosen
by the user.

1. Introduction

Tensor—-product B-spline surface have become the de—facto standard for surface represen-

tation in Computer—Aided Design, as they are computationally efficient and geometrically
flexible. In this chapter we give a survey on fair and shape-preserving techniques for sur-
face construction, fitting, and modification with tensor-product B-splines. Many of these
techniques are based on suitable linearizations of the non—linear fairness and shape crite-
ria. This leads to computationally efficient algorithms for shape design. We discuss both
parametric and functional surface representations.

This chapter is organized as follows. Section 2 introduces some notations and provides
some background from spline theory. The next two sections are devoted to functional
surfaces, whereas Sections 5 and 6 deal with truly parametric surface patches. Section 3
discusses fair functional surfaces. Here, we focus mainly on high—quality surfaces such as
lenses, where fairness is judged by distribution and flow of isophotes and reflection lines.
We describe methods for constructing and modifying fair functional surfaces, according
to these criteria. Section 4 is devoted to shape-preserving surface fitting with tensor—
product spline functions. We develop an approximation scheme where it is possible to
specify the signs of the Gaussian curvature (i.e., convexity and concavity) for the individual
spline segments. The scheme is based on a suitable linearization of the shape criteria that
leads to arbitrarily weak linear convexity and concavity conditions. Section 5 reports on
methods for designing fair parametric surfaces. We discuss several fairness functionals
and describe related techniques for surface fairing and surface fitting. These methods
can be used in reverse engineering for the reconstruction process of surfaces of physical
objects into geometric surface models. By digitizing the objects (e.g., using laser-scanning
devices) one obtains discrete data, i.e. (possibly triangulated) point sets. In order to get a
representation that is suitable for CAD applications, these data have to be approximately
converted into smooth surface models. Finally, Section 6 gives a survey on convexity
criteria for parametric surfaces and related techniques for shape-preserving surface design.



2. Surface fitting with tensor—product B-Splines

This section recalls some fundamental facts and notions concerning tensor—product (TP)
B-spline surfaces. Consider two monotonically increasing knot sequences, U = (ug, . .., Up,)
and V = (vg,...,vy). Let (M;(u))i=o,....m= and (N;(v));j=o,....n+ be the associated B—spline
functions of degree d, where m* = m—d—1, n* = n—d—1. For the definitions of these
functions, and for other related information, we refer to one of the various textbooks on
this topic, e.g., [21,34]. We assume that both knot sequences have (d + 1)-fold boundary
knots ug = ... = ug, Upm—q = ... = Uy, (and similarly for V'), but single inner knots.
Hence, the B-spline functions M;, N; span the linear space of all spline functions of degree
d from C% {ug, U] and C4 vy, v,] with the inner knots from U and V.

The real-valued function function  : [ug, Um]| X [vo,vs] = R,

z(u,v) = ZZ M;(u) Nj(v) d; j, (u,v) € [uo, Um] X [vo, vp], (2.1)

i=0 j=0

with the coefficients (or control points) d; ; € R is called a TP B-spline surface patch of
degree (d,d). More precisely, the surface is given by the graph (v v 2z(u,v))T of the
above function.

By choosing vector—valued (rather than scalar) coefficients d; ; € R® we obtain the
parametric TP B-spline surface patch

x(u,v) = ZZ M;(u) N;j(v) d; j, (u,v) € [ug, um] X [vo, Un], (2.2)

that describes the surface by its parametric representation, x : [ug, U] X [vo, vn] — R3.

Clearly, by using B-spline surfaces (2.1) we limit ourselves to surfaces which can be
interpreted as the graph of a function. This limitation can be avoided with the help
of the parametric surface representations (2.2). On the other hand, the construction of
truly parametric surfaces raises more complicated mathematical problems, as we will see
later. In many applications one will therefore prefer to use the simpler functional spline
surfaces (2.1).

Of course, the parametric surfaces (2.2) can describe the graphs of spline functions
(2.1) also. This is achieved by choosing the first two components of the control points
equal to the Greville abscissae associated with the given knot sequences U, V, cf. [34].
Then, the first two components of the parametric surface are the parameter values, i.e.,

x(u,v) = v , (u,v) € [ug, Um] X [vo, vn]- (2.3)

As a first example for the problems that will be discussed in this chapter, we briefly
recall the problem of surface fitting. It is one of the typical problems that arise in many
applications of TP B-spline surfaces, such as reverse engineering or data exchange. This
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problem can be stated as follows: given a “cloud” of P data (e.g. measurement data)
p; = (pi1 pi2 pi3) € R% i = 0,...,P, from an initial surface (P large), find a TP
B-spline surface that approximately matches the data. If the surface is described as the
graph of the spline function (2.1), then the TP B-spline surface is to satisfy

x(pi,lapi,2) ~ D3, 1= 07 ey P. (24)

Note that the functional approach can be used only if the initial surface can be interpreted
as the graph of a function, and (pi1,pi2) € [Uo,Um] X [Vo,vs]. In many cases these
assumptions can easily be satisfied by introducing suitable coordinates, e.g., by choosing
the zy—plane as the best—fitting plane of the given data.

Otherwise, if one uses the parametric surface description (2.2), then one firstly has to
associate suitable parameter values (u;, v;) with the data (see Section 5 for more informa-
tion). The parametric surface patch is to satisfy

x(ug,v;) =~ p;, 1=0,...,P (2.5)

As the standard technique, the unknown coefficients d; ; resp. d; ; of the surface are often
computed by minimizing the sum of squared errors

P P
L= Z(-’E(pz',l;pi,z) —pi,z)z resp. L% = Z 1% (ui, vi) — B 1%, (2.6)
=0

1=0

see e.g. [21]. These coefficients can then easily be found by solving a system of linear
equations.

For certain data (e.g., so—called uncertain data which contain “outliers”) it may be
advantageous to consider other kinds of error functions, like the ¢; or /., norm of the
errors. Many related references can be found in [26]. For these error functions the
unknown coefficients d; ; resp. d; ; can be computed via linear programming.

In the remaining sections of this chapter we will study problems that are related to
surface fitting, but with additional shape and fairness constraints for the desired spline
surfaces. We will not address the question of how to find suitable knot sequences U, V.
An automatic adaptive algorithm has been developed by Dierckx [ 7 ]. In practice, however,
one will often prefer to use a semi—automatic procedure with some user interaction, as the
optimal knot placement depends heavily on the shape of the given data.

As an alternative to tensor—product splines (where additional degrees of freedom can
only be introduced in strips parallel to either the u or the v—direction, due to the global
influence of the knots), the so—called hierarchical B—splines [ 14,16 ] provide the possibility
of adding degrees of freedom that act only locally. The methods described below can
readily be adapted to hierarchical B-spline representations.



3. Fair surfaces

Fairness functionals or visual properties play an important role for designing fair sur-
faces. Suitable fairness functionals include the thin plate energy (which can be expressed
by Gaussian curvature K and mean curvature H), linearized versions of it, or functionals
involving higher derivatives. Visual properties can be the distribution and flow of reflec-
tion lines and/or isophotes. Clearly, all these criteria for fair surfaces are non-linear. In
order to get algorithms which are suitable for real-time applications, approximations of
these functionals or restrictions to B-spline (functional) surface patches are widely used in
practice.

While the approximation of fairness functionals for parametric surfaces will be dis-
cussed in Section 4, we will now focus on fair B-spline surfaces x(u,v) = (u v z(u,v))7,
that describe the graph of a function, see (2.1) and (2.3). We consider surfaces with a
desired distribution of the mean curvature H = 1 (k1 +k2) (with k; as principal curvatures
in the point (u,v)), and surfaces with a desired flow of isophotes or reflection lines. At
first we discuss the problem of lens design for spectacles combining near— and far—vision
areas, where high—quality surfaces are needed [31,35]. The second part of this section is
devoted to the problem of smoothing a given surface by prescribing its isophotes or reflec-
tion lines. The potential applications of this part include the design of car body surfaces
in automotive industry.

The quality of the front surface of a lens is measured by the following error functional

2
Q(z) = /Qa(hzl —K9)? + B (% — HTeq> dudv, (3.1)
cf. [29,31], with the principal curvatures k1, ko of the surface, the design parameters
a, B > 0, and with the required mean curvature H,., of the front surface. The back surface
of the lens is assumed to be spherical. The user has to specify a certain mean curvature
H; in the far—vision area. In optical terms, the mean curvature is called (surface) power.
The required surface power H,, in the near vision area is not specified directly. Instead,
the progression H,, — H; > 0 corresponding to the amount of missing accommodation of
the eye will be chosen. Ideally, the front surface should be ‘locally spherical’, i.e. the so—
called surface astigmatism |k1 — k2| should vanish. Unfortunately, this requirement cannot
be fulfilled exactly, as locally spherical surfaces would have constant mean curvature. In
order to get an approximate solution one uses a surface with minimal astigmatism |k, — k2|
instead. Usually, one tries to minimize the astigmatism in the far- and near—vision areas
(the upper and the lower part of the lens) and within in a zone of progression connecting
both regions.

The front surface of a lens is represented by a graph of a TP B-spline function z =
z(u,v), whose domain 2 € R? is chosen as a disc. The optimal front surface is then
determined as an approximate solution to a variational problem:

- The desired mean curvature distribution is specified by a function H,.q = Hyeq(u, v).

- The weight functions o = a(u,v), 8 = B(u,v) (design parameters) are chosen in a
suitable way. They control the influence of the two parts of the error functional Q(z)
to the different regions of the lens surface.
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- The quality of the surface is measured by the error functional Q(z) in (3.1).

- The front surface of the lens is obtained as an (approximate) solution of @(z) — min.
The result depends on the design parameters «, 8 and on the mean curvature H,..,.

The error functional (3.1) is highly non-linear. Loos et al. [29,31] have proposed to
minimize it with the help of a Newton-Raphson-like iteration algorithm. We intro-
duce in (3.1) the well-known formulas for Gaussian curvature K and mean curvature
H for functional surfaces. Moreover, we approximate (3.1) by its Taylor expansion.
Let J = J(Zy, Ty, Tyy, Tuvs Tuy) be the integrand in (3.1), and let L be the operator
L(x) = (Ty, Ty, Tyu, Tuv, Tyy). After some calculations we obtain from (3.1) the following
second—order Taylor approximation at z = xg,

Qq, (z) = Q(x0) + /Q grad J(L(zo))T L(h) dudv + % /Q L(h)T Hess J(L(x0)) L(h) dudv

(3.2)
with h = z — z¢, and the gradient grad J and the Hessian HessJ of J. Then Q. (x) =
Qz, (zo+ h) is a quadratic functional in h and can therefore be minimized efficiently. That
is, the control points of the B-spline surface ¢ + A minimizing (3.2) can be computed by
solving a system of linear equations.

The Newton—-Raphson-like iteration algorithm needs an initial solution to start with.
It turns out that it would be sufficient to use a planar disc, z(u,v) = 0. However, in
order get faster convergence of the iterative algorithm, a part of a sphere or the surface
representation of a given lens can be used. Loos et al. [29,31] propose to use bicubic
tensor—product surfaces which are found by interpolating or approximating (least—squares
fit) of given point data. The data are sampled from an existing lens using a mechanical
device.

In order to guarantee existence and uniqueness of a numerical solution, certain bound-
ary conditions have to be added. As observed by Loos et al. [30,31 ], it suffices to require
z(0,0) = z,(0,0) = z,(0,0) = 0.

As an example, Figure 3.1 shows the improvement of a given progressive lens. The
left figures show power and astigmatism of lenses available on the market today. The right
figure visualizes the optimization results.

Now, we will determine fair surfaces by visual properties, such as the distribution and
the flow of the isophotes and/or reflection lines. With the unit normal vector

_ Xy XXy (=%, =Ty, 1)
X X Xy | V1422 + 22

of the required surface and 1 = (a,b,c) as the direction of the incident light, the light
intensity I” is given by

n

c— ax, — bz,
/2 2
Ty + Ty

cf. [1,21,31 ] The implicit equation I*(u,v) = const. describes the field of isophotes.

I" =n-1= = const., (3.3)
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a) power astigmatism
/N4 !
b) power astigmatism b) power astigmatism

Figure 3.1. Refractive power and optical error (astigmatism)
of a progressive lens without and with optimization.
(Courtesy by G. Greiner and J. Loos, Erlangen, Germany)

Andersson [1] has considered (3.3) as a partial differential equation of first order
and determined the solution with the method of characteristic curves. Loos et al. have
developed another approach. The desired lightness function I* is given. A surface z(u,v)
is to be found such that the contour curves of I* and I* are as similar as possible. This
leads to the fairness functional

2
— — bz
J(z) = Iz—1*2dud1)=/ € Tu ~ 2% _ px dudv. 3.4
@= [ -1 Q( — (3.4

Unfortunately, this objective function will generally not produce a satisfying surface shape,
see [29,31]. Therefore, Loos proposes to use another functional which is based on the
gradients of the lightness functions,

J(z) = / (eradI® — gradl*)? dudv = / (U -1 + 05 - 1)) dudv.  (35)
Q Q

Again, this functional is minimized using a Newton-Raphson-like method, based on a
Taylor expansion that is analogous to (3.2).

Similar to the isophotes, the reflection lines can be described by a coordinate function
C(u,v), see [19,21,29,31]. Then, the individual reflection lines of the surface x are
implicitly given by C(u,v) = const. The coordinate function depends on the type of the
light sources: axial or radial lines are used in practice.
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In order to construct surfaces with a prescribed distribution of reflection lines, the
following fairness functional has been introduced by Loos et al. [31],

J(x) = / (gradC® — gradC*)® du dv = / ((C’ff — )+ (C" - C:)2> dudv.  (3.6)
Q Q

The function C*(u,v) describes the desired flow of the reflection lines.

The potential applications of this approach include surface fairing: if the isophotes or
reflection lines have, in a region of interest of a given surface, an undesired flow, then the
user can specify the desired isophotes or reflection lines either graphically or by choosing
the coordinate functions I* or C*. Then the given surface is faired by minimizing the
fairness functionals (3.5) or (3.6). Figure 3.2 gives an example of such a fairing process.

Figure 3.2. Flow of isophotes on a given surface (left) and after fairing using (3.6) (right).
(Courtesy by G. Greiner and J. Loos, Erlangen, Germany)

Unfortunately, this approach cannot easily be extended to parametric surfaces, which
are often used in applications. In order to overcome this difficulty, we will discuss in
Section 5 the approximation of the normal field of the desired surface as a simulation of
the use of isophotes or reflection lines.

4. Convex surfaces

In this section we present a method for surface fitting with TP splines subject to convexity
and concavity conditions. Only very few methods for the construction of convex spline
surfaces are available in the literature, and the existing ones deal exclusively with Powell-
Sabin (PS) splines. These spline surfaces are described by the graphs of piecewise quadratic
functions, defined over special triangulations in R2.

Carnicer and Dahmen [4] describe a method for convexity—preserving interpolation
with PS splines. Unfortunately, as recently observed by Floater [ 13 ], in certain cases this
method fails to produce convex interpolants to convex data.
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An algorithm for least—squares surface fitting using convex PS splines has been devel-
oped by Willemans and Dierckx [37]. This algorithm is based on the convexity criterion
by Chang and Feng [ 6], that leads to a set of linear and quadratic inequalities which are
necessary and sufficient for convexity of PS splines. The coefficients of the PS spline sur-
face are found by minimizing the sum of squared errors subject to the linear and quadratic
inequality constraints. The resulting nonlinear optimization problem is then solved with
the help of a suitable function from the NAG library.

The shortage of methods seems to be due to the lack of suitable convexity conditions,
particularly for tensor-product spline surfaces. In the sequel we describe a method for
convex surface fitting using TP splines. Based on a suitable linearization of the convexity
conditions, we are able to formulate this task as a quadratic programing problem (mini-
mization of a quadratic objective function subject to linear constraints). This is one of the
standard problems in optimization, and there is a number of powerful solvers available.

The given knot sequences U, V define a partition of the domain of the spline function
z(u,v) (see Eq.(2.1)) into cells

Ci’j = [ui,uiﬂ] X [’Uj,’l)j+1], 1= d, ‘e .,m*; j = 0, .. .,n*. (41)

The restriction z(u,v)|q, , of the spline function (2.1) to each cell is a bivariate TP poly-

nomial of degree (d,d). Firstly we have to decide for each cell whether we wish to fit a
convex or concave spline segment. We list two possible criteria for this decision.

1. One may try to find a convex or concave triangulation for the data that belong to the
cell, possibly also including the data from the neighbouring cells. The construction
of such a triangulation has recently been discussed by Carnicer and Floater [5]. If
a convex (resp. concave) triangulation exists, then the corresponding spline segment
z(u,v)|g, . is restricted to be convex (resp. concave). As a disadvantage of this crite-
rion, it will not detect data that are ‘approximately’ convex, within some tolerance.

2. We fit a quadratic polynomial to the data that are contained in the cell, and possibly
also to the data from the neighbouring cells. The polynomial can easily be computed
by solving a 6 x 6 system of linear equations. Its shape can then be used as the
criterion for the shape of the spline segment z(u,v)|c, ;. If the Hessian matrix (which
is constant for quadratic polynomials) is positive (resp. negative) definite, then the
spline segment is chosen to be convex (resp. concave). No shape constraints are applied
in the case of an indefinite Hessian.

As the result, we associate with each cell C; ; a value y; ; € {—1,0,+1} in order to specify
whether z(u, ”)‘Ci,j should be convex (v; ; = 1) or concave (v; ; = —1). No constraints
are imposed if v; ; = 0. We assume, however, that no convex and concave spline segments
sharing a boundary or a vertex exist,

(k) # G0 A vig-mwa=-1 = max([i —k[,[j-1]) > 1. (4.2)

Clearly, convexity (resp. concavity) of the spline surface implies that the second directional
derivatives are nonnegative (nonpositive). Hence, if convex and concave spline segments
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would meet along a common boundary, then the second directional derivatives were to
vanish there. Thus, the spline function had to be linear along the common edge. Similarly,
if concave and convex cells of the spline surface would be to share a vertex, then the shape
of the surface in the neighbourhood was very restricted.

The above two shape criteria do not take into account the additional condition (4.2). If
they propose to use neighbouring spline segments with constrained, but different shapes,
then one should simply choose the shape of these cells to be unconstrained (y;; = 0)
instead.

As an example we consider the surface from Figure 4.1. (left). We sampled randomly
200 data from the surface and perturbed the z—components by random numbers from the
interval [—0.15,0.15]. The data and the knot lines of the approximating spline surfaces
(4 x 4 bicubic segments) have been drawn on the right-hand side of the figure. We used
the second criterion in order to decide the shape of the approximating spline surface; the
grey cells correspond to concave regions of the surface, white cells are unconstrained. The
second criterion were based on quadratic functions (paraboloids) obtained by least—squares
approximation of the data from one cell and from all its neighbouring cells.

P 4
.8

0.6 0

y

Figure 4.1. Original surface (left). Data and associated shape indicators 7y; ; (right).

Recall that the surface z(u,v) is convex (concave) in a cell (4.1) if and only if the
second directional derivatives in all directions ¥ = (ry r9) T,

— (r1 o) (a:uu(u,v) ﬂ7uv(u,'l))) (7‘1>’ (4.3)

Ty (U V) Loy (U, v)
-

0\’ d2
(ﬁ’) z(u,v) = ﬁx(u-l—trl,v—i-trg)

t=0

-

:HEL,U)

are nonnegative (resp. nonpositive) for all (u,v) € C; ;. That is, the Hessian matrix H (u, v)
of the spline function is positive (resp. negative) semidefinite. Using standard B-spline
techniques (knot insertion) we get a Bézier representation of the Hessian,

d d
H(Uv ’U) = Z Z Bg(u’ Us,s ui+1) Bg(v’ V5, 'Uj-i-l) BT,S (4'4)
r=0 s=0



over the cell C; ;. Here we use the Bernstein polynomials

d) (t—a)k(b—t)t* (4.5)

Bi(t,a,b) = (k (b—a)

of degree d with respect to the interval [a, b]. The second partial derivatives Zyy, Ty, and
Zyy are bivariate TP polynomials of degree (d—2,d), (d—1,d—1), and (d, d—2), respectively.
Thus, the Hessian is a matrix—valued polynomial of degree (d,d). The components of the
(d+1)? symmetric coefficient matrices B, ; € R**? are certain constant linear combinations
of the B-spline control points d; j, the coefficients of which depend on the given knot
sequences. In the bicubic case, explicit formulae for the matrices are given in [ 24 ]. Clearly,
the coeflicient matrices B, s depend on the cell C; ; also. In order to keep notations simple
we do not refer to the indices 1, j.

In order to guarantee the desired shape features of the spline surface (i.e., convexity
and/or concavity of the segments) one has to find conditions which imply that the Hessian
matrix is nonnegative (resp. nonpositive) definite. For (u,v) € C; ;, the Hessian matrix is
a nonnegative linear combinations of the coefficient matrices B, ;. Hence it is sufficient to
find such conditions for the individual coefficient matrices. A symmetric 2 X 2-matrix B =
B, s = (bk,1)k,1=1,2 is positive (resp. negative) semidefinite if and only if the inequalities

b1,1 Z 0, b2,2 Z 0 (resp. bl,l S O, bg’z S 0) and bl’lbg,z - b%g Z 0 (46)

hold. These conditions, however, would produce quadratic inequalities for the control
points d; ;, as the components of the matrices B, , are linear combinations of them. It is
advantageous to use a stronger set of linear sufficient conditions instead, as the resulting
optimization problem is easier to deal with. Such linear conditions can be generated with
the help of the following simple observation.

Lemma 4.1. Let N > 2 be an integer. Consider the 2N linear inequalities

(1 —=7—1)(L—7%) b11 + (Th—1 + T — 27k—17k) b1,2 + Th—1Tk 2,2 > 0

4.7
(1 —71—1)(1 = 7) b1 — (Th—1 + Tk — 27—17k) b1,2 + T—1Tx D22 > 0 (4.7)

ththZ%,kZL...,N.

(1) If the components of the symmetric 2 x 2-matrix B satisfy the linear inequalities (4.7),
then B is positive semidefinite.

(#4) Consider finitely many positive definite symmetric 2 x 2—matrices. If N is big enough,
then the inequalities (4.7) are satisfied for all matrices.

Proof. The matrix B is nonnegative definite if and only of the quadratic polynomials

a1 (t) = (1 — t)2 b171 + 2t(1 — t) b1,2 + t2 b272 and

4.8
QQ(t) = (1 — t)2 b171 — 2t(1 - t) b1,2 + t2 b2’2 ( )
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have nonnegative values for ¢ € [0, 1], this is equivalent to (4.6). We consider the Bézier
representation of these polynomials with respect to the N segments [7;_1, 7] (which form
a partition of the unit interval) and obtain

ql(t) =B(2)(t,’7'k_1,7'k) ql(Tk_l)-i-B%(..-) Qk,l-i-B%(...) ql(Tk), l=1,2, (4.9)

where the middle coefficients Q) are exactly the left-hand sides of the inequalities (4.7).
For proving (i) we observe that the inequalities (4.7) guarantee that all Bézier coeflicients
of the segments (4.9) are nonnegative (the boundary coefficients can be shown to be non-
negative linear combinations of neighbouring coefficients Qg ;). On the other hand, (i7) can
be concluded from the well-known fact that the Bézier coefficients () ; converge uniformly
to values of the polynomials ¢;(¢) for decreasing interval length % — 0. Hence, for positive
definite matrices B (where both polynomials are guaranteed to be positive on [0, 1], the
inequalities (4.7) are satisfied for sufficiently large values of N. m

This lemma provides a construction which produces arbitrarily weak linear conditions for
nonnegative definite matrices. By applying this construction to the (d + 1)? coefficient
matrices B, s from Eq. (4.4) we obtain linearized convexity conditions for the spline seg-
ment x(“v””c,»,j- Clearly, non—negative definiteness of the coefficient matrices is again
only a sufficient condition for a non—negative definite Hessian matrix H(u,v). However,
it is again possible to weaken the resulting constraints, simply by splitting the individual
cells C; ; into sub—cells, and considering the Bézier representation with respect to them.
This is explained in somewhat more detail in [24]. Similar to Lemma 4.1 (i7) one may
construct arbitrarily weak linear convexity conditions; they can be adapted to any finite
set of strongly convex spline functions. In most applications, however, it is not necessary
to do the splitting of the cells, as the convexity criteria are already relatively weak.

Now we are ready to formulate the shape-preserving surface fitting procedure which
leads to an approximate solution of the constrained approximation problem.

1. For each individual cell, choose the desired shape v; ; € {—1,0,+1} of the approxi-
mating spline function. See the remarks at the beginning of this section.

2. For all cells with 7; ; = 1 (resp. = —1) we generate linear sufficient convexity (resp.
concavity) conditions, by applying the construction of Lemma 4.1 (with appropriate
refinement level, e.g., N = 4) to the (d+ 1) coefficient matrices B, 5 (resp. to —B;. )
from Eq. (4.4). This leads to a system of linear inequalities for the unknown control
points d; ;.

3. Choose the quadratic objective function F. For instance, a suitable choice is a
weighted linear combination (with weight w € [0, 1]) of the squared errors sum (2.6)
with any one of the ‘energy’ terms from (5.2),

F((di,j)izo,.__’m*’j:()’___’n*) = (1 — w) ,C( . ) -+ wE( . ) (410)

Depending on the number of the data and on its distribution in the domain [ug, U, ] X
[vo, V], it may happen that the first part of the objective function is not a positive
definite quadratic functional of the control points. Then, the solution of the problem
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F — Min would not be unique, as the resulting system of linear equations would not
have full rank. By adding the weighted ‘energy’ term, however, a unique solution is
guaranteed to exist.

4. The control points d; ; of the spline surface (2.1) are found by minimizing the above
quadratic objective function subject to the linear inequality constraints obtained from
Step 2. This is a so—called quadratic programming problem, see e.g. [11]. A number
of powerful algorithms for quadratic programming are available. Our implementation
relies on the LOQO package by Vanderbei [ 36 |.

As an example we consider again the data and the knots from Figure 4.1. Figure 4.2.
shows two bicubic spline surfaces which approximate these data. The left surface has
been obtained with the help of the above shape—preserving approximation procedure. The
resulting quadratic programming problem (449 inequalities for 49 control points) has been
solved using LOQO (1.2 seconds needed on a HP 715/64 workstation); the residual sum £
(no energy term has been used) is equal to £ = 1.40. The second surface, by contrast,
is the result of the unconstrained minimization of the squared errors sum L, with the
residual sum £ = 1.18. Clearly, the constrained approximation gives the desired shape,
but the unconstrained one has a lot of undesired oscillations. The difference between
both approximations becomes even more obvious by looking at the distribution of the
determinant of the Hessian matrix, see Figure 4.3. Only regions with positive values of the
determinant have been plotted; they correspond to surface regions that are either concave
OT Convex.

Figure 4.4. may serve as a schematic illustration of the shape-preserving surface fitting
procedure. They spline surfaces satisfying the shape constraints are represented by the dark
grey region. They can be identified with a convex region (as convex linear combinations of
convex spline functions are again convex) in a linear space whose dimension is equal to the
number of control points d; ;. By generating the linear sufficient convexity conditions (see
step 2 of the above procedure) we inscribe a convex polyhedron. As observed earlier, the
convexity conditions are arbitrarily weak, they can be adapted to any finite set of strongly
convex (resp. concave) spline surfaces. That is, by increasing the number of inequalities
the inscribed polyhedron converges to the full convex set of spline functions satisfying the
shape constraints. The quadratic programming leads to a spline surface that approximately
minimizes the quadratic objective function (visualized by the circles).

/

optimal
approximate- O

solution

linear sufficient
convexity conditions

convex/concave spline surfaces
objective function
Figure 4.4. Schematic illustration of the shape—preserving surface fitting procedure.
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Figure 4.3. Determinant of the Hessian for the surfaces from Figure 4.2.

Clearly, the above shape preserving surface fitting procedure can be improved by gen-
erating constraints that are adapted to the data: when a first solution to the quadratic
programming has been found, we modify the linearized constraints by splitting the bound-
ary faces of the inscribed polyhedron, cf. Figure 4.4. This is done by using non—uniform
sequences (7Tg)k=o,...,~ in Lemma 4.1., and also by splitting the Bézier representation (4.4)
of the Hessian into sub—cells. For any details the reader should consult [24]. As the result,
the exact non-linear optimization problem (minimization of the objective function (4.10)
subject to the non-linear shape constraints) is approximated by a sequence of quadratic
programming problems. This leads to a sequential quadratic programming approach to
shape-preserving surface fitting.

Note that the construction of arbitrarily weak linear convexity conditions is only
possible as the spline functions satisfying the shape constraints form a convex set. That
is, the approximating surface is found by minimizing a quadratic objective function on a
convex domain. Clearly, this property is specific to the case of surfaces described by the
graphs of functions. It is much more complicated to develop shape-preserving techniques
for truly parametric surfaces, see Section 6.
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5. Fair parametric surfaces

During the design process of a B-Spline surface, usually not all the available parameters
(control points, parameterization) are uniquely determined by the user specifications and
requirements. In many applications, the remaining degrees of freedom have been chosen by
suitable heuristics. Recently, also some highly successful optimization techniques have been
introduced [2,15,16]. Related to surface fitting and surface construction, the following
two problems must be addressed.

- Fairing: given a not sufficiently smooth surface, find a fair surface.

- Surface fitting: given a set of points, find a fair surface approximating the data.

For both problems, suitable fairness criteria are needed. A reasonable measure of the
surface fairness is the thin—plate—energy

Q= /Q("ﬂ% + K3+ 2(1 = b)K1ka) dw (5-1)

with the principal curvatures s; of the surface x(u,v). Unfortunately, this functional is
highly non-linear. Consequently, it is not suitable for real-time applications.

Many methods described in the literature rely on the simplified versions of the thin—
plate—energy and similar functionals, such as

Q1 = [ (22, +x2,) dudo,
Q

QZ :/ ((xuuu + Xum})z + (xuuv + xm}y)z) du d'U, (52)
Q

QS :/ (xuvv)2 + (xvuu)2 du d’U,
Q

see [21] for more details and for related references. However, these ‘energy’ functionals
are not invariant, as they depend on the parameterization of the surface and of the data.
In order to overcome this dependency, Greiner [15,16] has introduced data—dependent
functionals: After choosing an auxiliary parameterized surface x (called the reference
surface) which specifies the shape of the desired surface x, consider the functional which
is based on the corresponding Beltrami operator

Q4= /(gradeX - grad, X)x, dwy,- (5.3)

That is, the metric (‘inner geometry’) of the reference surface is used in order to approxi-
mate the exact non-linear functionals by simpler ones. During the approximation process,
the approximation surface of the step k is used as a reference surface for the following
step k + 1. This procedure can be interpreted as a Newton—Raphson iteration, whereas in
each step the nonlinear functional [,(H2)dw (with H as mean curvature of x) is locally
approximated by the quadratic functional (5.3). Since this functional converges fast to the
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nonlinear one, the approximation surface minimizes the nonlinear functional. In each step
of the iteration, the new surface is computed simply by solving a linear system.

For fairing a given surface x(u,v) an efficient, automatic, and fast iterative method
has been developed by Hadenfeld [17,18]. The main idea is the following: in order to
minimize the value of an energy constraint, one modifies only one suitably chosen control
point d, s in each step and keeps the remaining ones. Iterating this fairing step gives the
final result. In addition, in order to keep a prescribed continuity between the original and
the faired surface, the control points at the boundaries of the surface may be kept.

Now we describe this method in somewhat more detail. Consider the situation after
a certain number of iteration steps; the initial surface x(u,v) with the control points d; ;
has been modified to X(u,v) with the control points d; ;. After the next step we get a new
surface x(u,v) with the representation

m

%(u,v) = Y Y di jM;(u)N;(v) + dy,s My () Ny (v), (5.4)

i=0 j=0
(4,5)#(r,8)

where the indices (r, s) specify the control point which is to be modified. The minimum of
the energy functional @, p € {1, 2,3}, with respect to d, s is determined by the normal

equation
0Qyp

0 ar,s

These equations are linear, as we consider only quadratic functionals, p € {1,2,3}. Then,
an explicit formula for the new position of the control point d, ; can be derived,

~ 1=i1 J=J1 _
d, s = Z Z d;jvi; (Z’)’i,j = 1) (5.6)

1=1%0 J=Jo

(4,3)#(r,s)

=0. (5.5)

with certain summation limits g, %1, jo, j1. The constant coefficients v; ; can be computed
by integrals over the B-Spline basis functions and their derivatives [17 ].

In most applications of surface fairing, a prescribed tolerance 6 between the old and
the smoothed surface has to be guaranteed. The distance of the control points is an upper
bound of the deviation between the old surface x and the modified surface %, cf. [32].
Hence, Hadenfeld [17] uses the error measure

|d'r,s - ar,s‘ S d (57)

instead of |x(u,v) — %X(u,v)| < 8. If the modified control point d,, fulfills (5.7), then it
is used as the new control d.. . of the faired surface. Otherwise we determine the new

r,s

location &:,S as follows. As shown in [17], the iso—surfaces of the energy functionals @Qp,

p € {1,2, 3}, are concentric spheres with centered at &T,s. Hence, the point d;. ,

d, =d,,+o3re = drs (5.8)

T,8 ,
’ |dr,s - dr,s|
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solves the constrained problem @Q,(d, ;) — min subject to (5.7); it is chosen as the new
control point.

In each step of the iterative algorithm, we modify the control point which leads to
the biggest improvement of the fairing functional @Q,. Hadenfeld [17] calls the potential
improvement of a control point,

25 = Qp(drs) — Qp(d ), (5.9)

its ‘ranking number’. These numbers are calculated for all control point which are free
for modification, and the resulting list is sorted. Clearly, the whole ranking list has to
be calculated only in the very first step of the iteration, otherwise only a local update is
required. Modifying the control point HT,S influences all ranking numbers z; ; with indices
li —r| <d, |j —s| <d, where d is the degree of the B-Spline surface.

As an example, Figure 5.1 shows a part of a motor hood before and after fairing. The
fairness of both surfaces is visualized by its isophotes. Irregularities in the isophotes point
to undesirable behaviour (left), whereas the smooth flow of the isophotes (right) indicates
a fair surface.

Figure 5.1: A part of a motor hood before (left) and after (right) fairing.

Now we consider the second fairing problem: approximation of a given cloud of un-
organized points p; (i = 0,..., P), possibly with arbitrary boundaries and holes in the
interior, by a fair parametric TP B-Spline surface. A straightforward way to solve this
problem would be to use a least—squares algorithms by minimizing the squared error £*,
cf. (2.6). In many cases, however, this method would fail as the holes in the data set may
lead to ‘gaps’ in the coefficient matrix of the corresponding normal equations. Therefore,
we use the modified error functional

L =L+ X)) oQy (5.10)
k

with the design parameters aj > 0 (3, ax = 1), certain energy functionals Qj, and a
positive weight A € R. In order to get linear and therefore fast schemes, we assume that
the energy functionals @), are quadratic in the unknown control points, such as Q1,...,Q3
in (5.2). The energy functionals will ‘close’ the ‘gaps’ in the coefficient matrix of the
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minimization problem £** — min, cf. (5.10). Differentiating (5.10) leads to the necessary

condition Py 50" 90
_ P
od, .~ odp > 9d,;

=0, (5.11)

which may be rewritten as a linear system Ad = b, where the components of the unknown
control points are collected in a vector d.

The crucial step in parametric surface fitting is the assignment of suitable parameter
values (u;,v;) to the given points p,. The quality of the final approximation surface
heavily depends on the choice of an appropriate parameterization. This parameterization
also defines the topology of the data, corresponding to the location of the parameter values
in the parametric domain of the surface, see [16]. In the literature, many proposals and
heuristics can be found to compute appropriate initial parameterizations for the purpose
of parametric surface fitting [12,16,21,22]. Most of these methods guarantee a valid
parameterization, but not an optimal one. That is, the distance vectors between the data
and the corresponding points on the surface are generally not perpendicular to the surface.
In addition, most parameterization methods assume a special topological structure of the
data, which cannot be expected in the general case.

In the sequel we describe an iterative method which adapts the parameterization to
the data. Note that our method to provide a reasonable parameterization may fail if the
geometry of the points is too complicated.

Dietz [9,10 ] has developed an iterative method which produces a fair approximation
surface. His method can be seen as simulation of the deep-drawing process of metal sheets.
He starts with a least—squares fitting plane. An initial parameterization can simply be
obtained by orthogonal projection of the points onto this plane. In the subsequent iteration
steps the plane is successively deformed until it reaches the final shape. In each iteration
step, the new surface is found by solving the minimization problem £** — min, where the
value of the weight A\ decreases in each step, thus leading to more flexibility of the surface.
In addition, the parameterization of the data is modified after each step; it is adapted to
the current surfaces with the help of the so—called parameter correction, see [21]. That
is, an optimal parameterization (orthogonal distance vectors) is obtained by minimizing
the total error sum with respect to the parameters (u;,v;). The necessary conditions yield
the 2-dimensional non-linear equations

(P; — x(ui,vi)) - %o (us, v;)

=0,
(P; — x(ui, ) - Xo(us, v;) = 0, (5.12)

for each point p;. They can be solved efficiently with a damped Gauss—Newton method

with correction terms
2 -1 _x).
Au) _ (X7 xuxy (P =) -xu) (5.13)
Av XuXo Xy (P — %) - Xy

Clearly, parameter correction will generally converge to a local minimum. But since we
adapt the parameterization after each small deformation of the surface, we get a more
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surfaces minimizing the energy functional ); while deforming a plane towards the points

automatically computed during the iterative algorithm. Figure 5.2 shows a sequence of
(left upper corner) which can be said to serve as a mould.

additional benefit of this process, it produces approximately isometric parameterizations.
Unlike the majority of the available approximation methods, Dietz’s method does not
need a sophisticated initial parameterization to start with; suitable parameter values are

global character than for traditional parameter correction (as described in [21]). As an
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Figure 5.2. A sequence of surfaces which are generated by
Besides fairness, additional constraints on normals and derivatives may be used for

geometric surface design. For instance, in the automotive industry, the quality of a surface

patch have been used. In order to restrict the approximation surface to the domain which
is often judged by the distribution of reflection lines. These curves are determined by the

is given by a set of points
point sets are needed, cf. [8,9,10]. Fig. 5.3 shows the complete (trimmed) solution of the

For the approximation of the set of points in Fig. 5.2
approximation surface of the set of points in Fig. 5.2.
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Figure 5.3. Trimmed approximation surfaces as approximation of the set of points in Figure 5.2.

normal vector field of the given surface. If a user wants to prescribe a desired flow of
reflection lines, he can specify a suitable field of normal vectors n; (jn;| = 1) in certain
points p; (i = 0,...,P) of the desired surface. As another motivation for prescribing
normal vectors, one may wish to guarantee approximate G''-continuity at trimmed surface
boundaries.

In order to avoid nonlinearity, Dietz [9,10] has introduced the quadratic functional

M

Qs =Y (ni-x,) + (mi - x,,)’ (5.14)

=1

X, . X, X, . X, .
"”"‘S":(rm\iﬁ)/ Tl T |’ (5.15)

where %,,,, X,, denote the derivatives of the approximation surface from the previous itera-
tion step. Qs can be interpreted as sin” a; where q; is the angle between the given surface
normal and the surface normal of the approximation surface in a point p;. The definition
of the surface tangent vectors x,, and x;, leads to ‘approximate invariance’ with respect
to the parameterization [10]. The functional @5 is quadratic in the control points, hence
linear algorithms can be derived from (5.14). Using the angles «; directly, by contrast, we
would obtain non—linear procedures which are more difficult to deal with.

with

6. Convex parametric surfaces

We give a survey on available convexity conditions for parametric surfaces and discuss
their applications to surface fitting and surface design.

Probably the very first convexity criterion for parametric TP Bézier surfaces is due
to Schelske’s Ph.D. thesis [21,33 ]. If all meshes of the control net are parallelograms and
all control points belong to the boundary of the convex hull of the control net, then the
surface patch is guaranteed to be convex. However, this condition is of little practical use
at it is only satisfied by convex translational surface patches.
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Zhou [38] discusses convexity conditions for parametric triangular Bézier surfaces.
His conditions lead to a system of inequalities whose left—hand sides are polynomials of de-
gree 6 in the components of the control points. In addition, a stronger sufficient conditions
is presented which leads to polynomial inequalities of degree 3.

Cao and Hua [ 3] derive a sufficient convexity criterion for parametric triangular Bézier
surface patches of degree 2. Their approach is based on the distribution of the Gaussian
curvature of such a patch.

A recent manuscript by Koras and Kaklis derives similar convexity conditions for
parametric tensor-product B-spline surfaces [28]. They derive a system of polynomial
inequalities for the components of the control points that guarantees convexity. The left—
hand sides of these inequalities are polynomials of degree 6 in the components of the control
points.

An approximate method for removing convexity flaws from tensor—product B—spline
surfaces has been developed by Kaklis and Koras [27]. The algorithm tries to modify a
small number of control points of a given non—convex surface patch such that the surface
becomes convex. This modification is based on the following nice observations.

The possible locations of a control point d; ; for which the Gaussian (resp. mean)
curvature at some fixed point x(ug,vg) vanishes, are called the parabolic (resp. minimal)
loci of d; ; with respect to (ug,vo), where (ug,vo) is assumed to be within the support
of the corresponding TP B-spline basis function. (Minimal surfaces are characterized by
vanishing mean curvature, whereas vanishing Gaussian curvature characterizes parabolic
surface points.) The parabolic loci of a control point with respect to a surface point turn
out to form a quadric, whereas the minimal loci form a cubic surface. Based on these
results, Kaklis and Koras derive an optimization—based technique to remove shape flaws
(non—convex regions) in the neighbourhood of one (or more) fixed point(s) x(up, vo). As
demonstrated by the examples, it seems to be possible to handle data from industrial
applications with this approach.

A construction of linear sufficient convexity conditions for parametric Bézier surface
patches has been developed in [23]. With the help of a so—called reference surface (which
specifies the expected shape) it is possible to generate a system of linear inequalities for
the control points that implies the desired shape properties. Unlike the case of bivariate
functions (see Section 4), however, convex parametric surface do not form a convex set in
some linear space. Thus, it is impossible to approximate the full set of convex patches by
an inscribed convex polyhedron with any desired accuracy. Nevertheless it is still possible
to circumscribe a convex polyhedron to any given interior point (which corresponds to
the reference surface). The details of this construction are described in [23 ], where also
an application to shape preserving surface modification (‘lifting’) is described. A shape—
preserving surface fitting procedure for parametric surfaces has been presented in [25].
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